

Python Programming
A Step-by-Step Guide to Learning the Language

https://taylorandfrancis.com

Python Programming

A Step-by-Step Guide to Learning the Language

Dr. C. K. Dhaliwal
Assistant Professor

Chandigarh Business School of Administrations

Mohali, Punjab

Poonam Rana

Assistant Professor

Chandigarh Business School of Administrations

Mohali, Punjab

Dr. T. P. S. Brar

Professor & Head of Department

Chandigarh Group of Colleges

Mohali, Punjab

First published 2025
by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

and by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

CRC Press is an imprint of Informa UK Limited

© 2025 Manakin Press Pvt. Ltd

The right of of C. K. Dhaliwal, Poonam Rana and Dr. T. P. S. Brar to be identified as authors
of this work has been asserted in accordance with sections 77 and 78 of the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any
form or by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage or retrieval system,
without permission in writing from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or
Bhutan).

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 9781032646558 (hbk)
ISBN: 9781032669571 (pbk)
ISBN: 9781032691053 (ebk)

DOI: 10.4324/9781032691053

Typeset in Times New Roman
by Manakin Press, Delhi

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://www.dx.doi.org/10.4324/9781032691053

Organization of the Book

Chapter 1 This is an introductory chapter that provides an overview of Python,
covering its history, features, applications, and installation process. It highlights
Python's dynamic, high-level, and object-oriented language features and cross-
platform compatibility. The chapter emphasizes the use of Python in web development,
data science, and machine learning. It also explains Python interactive help and
demonstrates how to install and execute Python on different platforms. Additionally,
the chapter covers how Python differs from other programming languages.

Chapter 2 This chapter introduces the basics of Python programming language. It
covers keywords and identifiers, explaining their differences and how to use them
properly. The chapter then moves on to Python statements and demonstrates how to
use them to create simple programs. It highlights the importance of documentation and
indentation in Python programming. The chapter covers variables and their declaration
in Python, including the rules for naming variables. It also covers the different data
types in Python, such as numbers, strings, lists, and tuples, along with examples of
how to use them.

Chapter 3 This chapter covers Python operators, including arithmetic, relational,
logical, bitwise, assignment, and identity operators. It also explains the precedence
and associativity of operators, which determine the order in which they are evaluated.
The chapter demonstrates how to use expressions, which are combinations of operands
and operators, to perform calculations and manipulate data.

Chapter 4 This chapter covers conditional statements in Python, including if, if-
else, and if-elif-if statements. It also covers loops in Python, including while, for,
and infinite loops, along with examples of how to use them. Additionally, the chapter
covers the use of the break, continue, and pass statements in Python loops, which are
used to change the flow of control in a program.

Chapter 5 This chapter covers the native data types in Python, including numbers,
lists, tuples, sets, dictionaries, and strings. It provides examples and use cases for
each data type. The chapter highlights the differences between mutable and immutable
data types and how to work with them. Additionally, it covers how to manipulate and
operate on data types, including slicing and indexing.

Chapter 6 This chapter covers Python functions, including the types of functions in
Python, such as built-in functions, user-defined functions, and anonymous functions.
It discusses the advantages of using functions, such as code reusability, modularity,
and easier debugging. The chapter also covers the differences between pass by value
and pass by reference and demonstrates recursion, which is the ability of a function
to call itself.

vi Python Programming: A Step-by-Step Guide to Learning the Language

Chapter 7 This chapter covers Python modules, which are files that contain Python
definitions and statements. It demonstrates how to create a module and how to import
it into another Python program. Additionally, the chapter covers standard modules,
which are built-in modules that come with Python, and Python packages, which are
directories containing modules. It highlights how to use and install standard modules
and how to create and install Python packages.

Chapter 8 This chapter covers Python exceptions, which are errors that occur during
program execution. It explains the different types of built-in exceptions in Python,
such as ZeroDivisionError and TypeError. The chapter demonstrates how to handle
exceptions using the try-except block and how to raise and catch user-defined
exceptions. It also provides examples of exception handling and how to use the else
and finally clauses with the try-except block.

Chapter 9 This chapter covers file operations in Python, including how to create,
open, read, write, and close files using file methods such as read() and write(). The
chapter also covers renaming and deleting files, as well as creating and navigating
directories in Python using the os module. It provides examples of how to use file
methods and how to handle file exceptions.

Chapter 10 This chapter covers designing classes in Python, which are templates for
creating objects that have similar properties and behaviors. It explains how to create
objects from a class, how to access object attributes, and how to use built-in class
attributes, such as name and doc. The chapter also covers garbage collection in Python,
which is the process of freeing up memory that is no longer being used by a program.
It provides examples of how to design and use classes in Python.

Chapter 11 This chapter covers inheritance in Python, which is the ability to create
a new class from an existing class. It explains the different types of inheritance in
Python, including single inheritance, multiple inheritance, and multilevel inheritance.
The chapter also covers method overriding in Python, which is the ability to redefine a
method in a subclass. Additionally, the chapter discusses special functions in Python,
which are predefined methods that are called under certain circumstances, such as init
and str. It provides examples of how to use inheritance and special functions in Python.

Chapter 12 This chapter covers operator overloading in Python, which is the ability to
redefine the behavior of an operator in a class. It explains how to overload the + and -
operators in Python, as well as bitwise and relational operators. The chapter provides
examples of how to use operator overloading to customize the behavior of operators
in Python.

The Appendix- I is given which provides the list of Python Standard Modules with
the description of each.

The bibliography is given at the end for reference of readers.

Authors

1. Introduction to Python Language

 1–24
1.1 Programming Language

 2

1.2 History of Python Language

 3

1.3 Origin of Python Programming Language

 5

1.4 Features of Python

 5

1.5 Limitations of Python

 6

1.6 Major Applications of Python

 7

1.7 Getting Python

 8

1.8 Installing Python

 8

1.8.1 Unix and Linux Installation

 9

1.8.2 Windows Installation

 9

1.8.3 Macintosh Installation

 10

1.9 Setting up Path

 10

1.9.1 Setting up Path at Unix/Linux

 11

1.9.2 Setting up the Path at windows

 11

1.10 Python Environment Variables

 11

1.11 Running Python

 12

1.11.1 Interactive Interpreter

 13

1.11.2 Script from the Command-Line

 13

1.11.3 Integrated Development Environment

 14

1.12 First Python Program

 14

1.12.1 Interactive Mode Programming

 15

1.12.2 The Script Mode Programming

 16

1.13 Python’s Interactive Help

 16

1.13.1 Python Help Through a Web Browser

 17

1.14 Python Differences From Other Languages

 17

1.14.1 Difference Between C and Python
 18

1.14.2 Difference Between C++ and Python
 19

1.14.3 Difference Between Java and Python
 21

1.15 Summary

 22

Review Questions 22

Detailed Contents

2. Python Data Types and Input Output

 25–52
2.1 Keywords

 25

2.2 Identifiers

 27

2.3 Python Statements

 28

2.4 Indentation

 29

2.5 Python Documentation

 30

2.5.1 Single Line Comment

 30

2.5.2 Multi Line Comments

 30

2.6 Docstrings

 31

2.7 Variables

 32

2.7.1 Variable Assignment

 33

2.7.2 Variable Types in Python

 33

2.8 Multiple Assignment

 34

2.9 Python Data Types

 36

2.9.1 Numeric Datatype

 37

2.9.1.1 Integers

 37

2.9.1.2 Floating-point Numbers

 38

2.9.1.3 Complex Numbers

 39

2.9.2 Strings

 40

2.9.2.1 Indexing of a String:

 40

2.9.2.2 Negative Indexing:
 41

2.9.2.3 Slicing

 41

2.9.3 Booleans

 42

2.9.4 Lists

 42

2.9.5 Tuples

 43

2.9.6 Sets

 44

2.7.8 Dictionaries

 46

2.10 Data Type Conversion

 48

2.10.1 Implicit Type Conversion in Python

 49

2.10.2 Explicit Type Conversion in Python

 49

2.11 Input and Output

 50

2.12 Import

 51

2.13 Summary

 51

Review Questions 52

3. Operators and Expressions

 53–70
3.1 Operator
 53

3.1.1 Arithmetic Operators

 54

viii Python Programming: A Step-by-Step Guide to Learning the Language

3.1.2 Comparison Operators

 56

3.1.3 Assignment Operator

 58

3.1.4 Logical Operators

 59

3.1.5 Bitwise Operators

 61

3.1.6 Special Operators

 63

3.1.6.1 Identity Operators

 63

3.1.6.2 Membership Operators

 64

3.2 Expressions
 65

3.2.1 Python Operator Precedence

 66

3.2.2 Associativity

 67

3.2.3 Non-Associative Operators

 68

3.3 Summary

 68

Review Questions 68

4. Control Structures

 71–92
4.1 Decision Making Statements

 72

4.1.1 Python if Statement

 72

4.1.2 Python if-else Statement

 73

4.1.3 Python if-elif-else

 75

4.1.4 Python Nested if Statements

 77

4.2 Python Loops

 78

4.2.1 Types of Loops

 79

4.2.2 Python While Loop

 79

4.2.3 The Infinite Loop

 81

4.2.4 Using else with While Loop

 81

4.2.5 Python for Loop

 82

4.2.6 The range() Function

 84

4.2.7 For Loop with else

 85

4.2.8 Nested Loops

 86

4.3 Python Control Statements

 87

4.3.1 Python Break Statement

 87

4.3.2 Python Continue Statement

 89

4.3.3 Python Pass Statement

 90

4.4 Summary

 90

Review Questions 91

5. Python Native Data Types

 93–142
5.1 Numbers

 94

5.1.1 Number Type Conversion

 94

Detailed Contents ix

5.1.2 Python Mathematical Functions 95

5.1.3 Python Trigonometric Functions 97

5.1.4 Python Random Number Functions 99

5.1.5 Python Mathematical Constants 100

5.2 Python Lists 101

5.2.1 Creating a List 101

5.2.2 Traversing a List 101

5.2.2.1 Indexing 102

5.2.2.2 Traversing Nested Lists 103

5.2.2.3 Negative Indexing 104

5.2.2.4 Slicing 105

5.2.3 Changing or Adding Elements to a List 105

5.2.4 List Methods 106

5.2.5 List Functions 107

5.2.6 List Comprehension 108

5.2.7 List Membership Test 108

5.3 Python Tuples 109

5.3.1 Creating a Tuple 110

5.3.2 Unpacking Tuple 111

5.3.3 Traversing Elements in a Tuple 111

5.3.3.1 Indexing 112

5.3.3.2 Negative Indexing 113

5.3.3.3 Tuple Slicing 113

5.3.3.4 Changing/Updating a Tuple 114

5.3.3.5 Deleting a Tuple 115

5.3.3.6 Python Tuple Methods 115

5.3.3.7 Python Tuple Functions 116

5.3.3.8 Advantages of Tuple 116

5.4 Python Sets 117

5.4.1 Creating a Set 118

5.4.2 Changing/Adding Elements to a Set 118

5.4.3 Removing Elements from a Set 119

5.4.4 Python Set Operations 119

5.4.4.1 Set Union 120

x Python Programming: A Step-by-Step Guide to Learning the Language

5.4.4.2 Set Intersection

 120

5.4.4.3 Set Difference

 120

5.4.4.4 Set Symmetric Difference

 121

5.4.5 Python Set Methods

 122

5.4.6 The in Operator

 123

5.4.7 Python Set Functions

 123

5.4.8 Frozen Sets

 124

5.5 Python Dictionary

 125

5.5.1 Creating a Dictionary

 125

5.5.2 Accessing a Dictionary

 125

5.5.3 Updating a Dictionary
 126

5.5.4 Removing or Deleting Elements of a Dictionary 127

5.5.5 Python Dictionary Methods

 127

5.5.6 Python Dictionary Membership Test

 128

5.5.7 Python Dictionary Functions

 129

5.6 Python Strings

 130

5.6.1 Creating a String in Python

 131

5.6.2 Accessing String Characters

 132

5.6.3 Changing or Deleting String Characters 133

5.6.4 Python String Operations

 135

5.6.4.1 Concatenation

 136

5.6.4.2 Iteration and Membership Test

 137

5.6.5 String Formatting

 138

5.6.6 Python String Built-in Methods

 139

5.7 Summary

 140

Review Questions 140

6. Python Functions

 143–160
6.1 Python Functions

 143

6.2 Advantages of Python

 144

6.3 Types of Functions

 145

6.4 Built-in Functions

 145

6.5 Python User Defined Functions

 146

6.5.1 Function Definition

 147

6.5.2 Function Call

 147

Detailed Contents xi

6.5.3 Types of Function Arguments (Parameters) 148

6.5.3.1 Function with No Arguments

 149

6.5.3.2 Function with Required Arguments 150

6.5.3.3 Function with Arbitrary Length Arguments 150

6.5.3.4 Function with Keyword Based Arguments 151

6.5.3.5 Function with Default Arguments 152

6.6 Python Anonymous Functions

 153

6.6.1 Characteristics of Lambda Form

 154

6.7 Pass by Value vs. Pass by Reference

 154

6.7.1 Pass by Value

 155

6.7.2 Pass by Object Reference

 156

6.8 Recursion

 156

6.8.1 Advantages of Recursion

 157

6.8.2 Disadvantages of Recursion

 158

6.9 Scope and Lifetime of Variables

 158

6.10 Summary

 159

Review Questions 159

7. Python Modules

 161–172

7.1 Need of Module

 162

7.2 Module Definition

 163

7.3
 Creating a Module 163

7.4 Importing Module in The Interpreter

 164

7.5 Importing Module in The Another Script

 165

7.6 Importing Modules

 165

7.7 Search Path of Module

 166

7.8 Module Reloading

 167

7.9 The dir() Function

 168

7.10 Standard Modules

 168

7.11 Python Packages

 169

7.12 Summary

 170

Review Questions 171

8. Exception Handling

 173–182

8.1 Exception

 173

8.2 Python Built-in Exceptions

 174

xii Python Programming: A Step-by-Step Guide to Learning the Language

8.3 Exception Handling

 175

8.3.1 Try, Except, Else and Finally
 176

8.3.2 Catching Specific Exceptions in Python 178

8.3.3 try….finally

 179

8.4 Python User Defined Exceptions

 179

8.5 Summary

 181

Review Questions 181

9. File Management in Python

 183–196

9.1 Operations on Files

 183

9.1.1 Opening a File

 184

9.1.2 File Modes

 185

9.1.3 File Object Attributes

 186

9.1.4 File Encoding

 186

9.1.5 Closing a File

 187

9.2 write() and read() Methods

 188

9.2.1 Writing to a File

 188

9.2.2 Reading from a File

 188

9.3 Python File Methods

 189

9.4 tell() and seek() Methods

 190

9.5 Renaming and Deleting Files

 190

9.5.1 Rename() Method

 191

9.5.2 Remove() Method

 191

9.6 Directories in Python

 192

9.6.1 mkdir() Method

 192

9.6.2 chdir() Method

 193

9.6.3 getcwd() Method

 193

9.6.4 rmdir() Method

 194

9.6.5 listdir() Method

 194

9.7 Python Directory Methods

 194

9.8 Summary

 195

Review Questions 195

10. Classes and Objects

 197–212

10.1 Designing Classes

 199

10.2 Creating Objects

 200

Detailed Contents xiii

10.2.1 Class Variable

 201

10.2.2 Instance Variable

 202

10.3 Types of Methods

 203

10.4 Access Specifiers in Python

 204

10.5 Accessing Attributes

 205

10.6 The Class Program

 206

10.6.1 Using a Class with Input

 207

10.6.2 A Class Program with Computations

 208

10.7 Editing Class Attributes

 208

10.8 Built-in Class Attributes

 209

10.9 Garbage Collection/Destroying Objects

 211

10.10 Summary

 211

Review Questions 212

11. Inheritance

 213–220
11.1 Python Single Inheritance

 214

11.2 Python Multiple Inheritance

 215

11.3 Python Multilevel Inheritance

 216

11.4 Method Overriding in Python

 217

11.5 Special Functions in Python

 218

11.6 Summary
 219

Review Questions 220

12. Python Operator Overloading

 221–226

12.1 Overloading ‘+’ Operator in Python

 221

12.2 Overloading ‘-’ Operator in Python

 222

12.3 Overloading Bitwise Operators

 223

12.4 Overloading Relational Operators

 224

12.5 Summary

 225

Review Questions 225

Appendix 227-232

Bibliography 233

xiv Python Programming: A Step-by-Step Guide to Learning the Language

1

Introduction to Python
Language

Highlights
l Introduction and History of Python Language

l Features of Python

l Applications of Python

l Python Interactive Help

l Installing and Executing Python

l How Python Differs from Other Languages

We can see that computers have a wide range of real-world problem-solving
abilities. The issues could be as straightforward as multiplying two numbers
or as complex as designing and launching a space shuttle. Assuming that a
machine can complete all jobs on its own would be wrong. Any problem
whose solution is not defined cannot be resolved by a computer. A computer
cannot solve any issue whose answer is not known. The computer merely
executes the set of instructions that a programmer has provided to it. There
may be mistakes and no resolution if the computer cannot comprehend the
instructions. As a result, it is the programmer’s grave responsibility to come
up with a solution by giving the machine the right commands. As a result, it
is the programmer’s grave responsibility to come up with a solution by giving
the machine the right commands.

2

 Python Programming: A Step-by-Step Guide to Learning the Language

1.1 Programming Language
A programming language is a formal language used to instruct a computer to
perform a specific task or set of tasks. It provides a set of rules and syntax
for creating and manipulating code, allowing developers to write programs
and applications that can run on a computer.

Programming languages can be classified into different types based on their
purpose and structure. Some common types of programming languages
include:

1. Procedural languages: These languages use a series of steps to solve a
problem or accomplish a task. Examples include C, Fortran, and Pascal.

2. Object-oriented languages: These languages model the problem as a set
of objects that interact with each other to accomplish a task. Examples
include Java, Python, and C++.

3. Functional
languages: These languages focus on the evaluation
of expressions and functions, treating them as mathematical equations.
Examples include Haskell, Lisp, and ML.

4. Scripting languages: These languages are used to automate tasks, such
as web development, and are often interpreted rather than compiled.
Examples include JavaScript, PHP, and Python.

There are many programming languages in use today, each with its own
strengths and weaknesses, and new languages are continually being developed
to meet the evolving needs of the technology industry.

Some of the most common programming languages used today include:

1. Java: Java is an object-oriented programming language that is widely
used for developing enterprise-level applications, mobile applications,
and web applications.

2. Python: Python is a high-level programming language that is popular for
its readability, ease of use, and versatility. It is commonly used for web
development, data analysis, and artificial intelligence.

3. JavaScript: JavaScript is a scripting language that is used for developing
web applications and interactive front-end interfaces.

4. C#: C# is an object-oriented programming language that is commonly
used for developing Windows desktop applications, video games, and
web applications.

Introduction to Python Language 3

5. C++: C++ is a high-performance language that is used for developing
operating systems, video games, and other resource-intensive applications.

6. PHP: PHP is a server-side scripting language that is used for developing
dynamic web applications and websites.

7. Ruby: Ruby is a high-level scripting language that is known for its
simplicity and ease of use. It is commonly used for web development
and building web applications.

It is worth noting that the popularity of programming languages can vary
depending on factors such as industry trends, the rise of new technologies,
and the emergence of new use cases.

1.2 History of Python Language
Python is a high-level, interpreted programming language that was first
released in 1991 by its creator, Guido van Rossum. It was designed to be
easy to read and write, and to emphasize code readability and simplicity. The
origin of the name “Python” comes from a TV show from the 1970s called
“Monty Python’s Flying Circus”. Guido van Rossum is a big fan of the show,
and he named the language after it.

Python was initially developed as a hobby project, and its first version was
released in February 1991. The language was designed with a clear and
concise syntax that allowed developers to write code quickly and efficiently.
Python’s creators were also focused on making the language easily readable,
which has helped to make it popular with beginners and experts alike.

Following are the illustrations of different versions of Python along with the
timeline.

In 2000, Python 2.0 was released, which included many new features such as
garbage collection, Unicode support, and list comprehensions. This version
of the language became the dominant version of Python for many years, and
it is still widely used today, despite being officially deprecated as of 2020.

In 2008, Python 3.0 was released, which was a major overhaul of the
language that introduced many changes and new features. One of the most
significant changes was the removal of backward compatibility with Python
2.x, which made it more difficult for developers to transition to the new
version. However, Python 3.0 brought many improvements and new features,
including better Unicode support, improved I/O, and more efficient handling
of exceptions.

 4 Python Programming: A Step-by-Step Guide to Learning the Language

Fig. 1.1: Versions of Python Programming Language.

Today, Python is one of the most popular programming languages in the world,
and is used in a wide variety of applications, including web development, data
analysis, artificial intelligence, and scientific computing. It is a powerful and
flexible language that is well-suited to many different tasks, and it has a large
and vibrant community of developers who continue to work on improving the
language and developing new libraries and tools.

Introduction to Python Language 5

1.3 Origin of Python Programming Language
Python programming language was created by Guido van Rossum in the
late 1980s, while he was working at the Netherlands-based research institute
called the National Research Institute for Mathematics and Computer Science
(CWI). Guido was tasked with creating a successor to the ABC programming
language that was easy to learn and use. He aimed to design a language with
an easy-to-understand syntax, which would allow developers to write and
maintain code more efficiently.

1.4 Features of Python
Python is a high-level, interpreted programming language that is known for
its simplicity, readability, and ease of use. Here are some of the key features
of Python:

1. Simple and easy-to-learn syntax: Python has a simple and concise
syntax, which makes it easy to read and write. Its code is easy to
understand, even for beginners, and this simplicity is one of the reasons
why Python has become so popular.

2. Interpreted language: Python is an interpreted language, which means
that you don’t need to compile your code before running it. This makes
it faster to develop and test code, as you can run it immediately and see
the results.

3. Cross-platform compatibility: Python code can run on many different
platforms, including Windows, Linux, and macOS. This is because
Python code is interpreted, and the interpreter is available on all of these
platforms.

4. Large standard library: Python comes with a large and comprehensive
standard library that provides many useful functions and modules for
developers. This makes it easy to perform common tasks, such as reading
and writing files, working with databases, and performing network
operations.

5. Third-party modules and libraries:
 Python has a huge and active
community of developers who create and maintain many useful third-party
modules and libraries. These libraries provide additional functionality,
such as scientific computing, data analysis, web development, and
artificial intelligence.

6

 Python Programming: A Step-by-Step Guide to Learning the Language

6. Object-oriented
programming support: Python supports object-
oriented programming, which allows developers to write modular,
reusable, and maintainable code.

7. Dynamic typing: Python is a dynamically-typed language, which means
that the type of a variable is determined at runtime, rather than at compile
time. This makes it more flexible and allows developers to write code
more quickly.

8. High-level abstractions: Python provides many high-level abstractions,
such as list comprehensions, lambda functions, and decorators, which
make it easier to write code that is concise and expressive.

Overall, Python is a powerful and flexible programming language that is
well-suited to many different tasks, and its features make it easy to learn and
use, even for beginners

1.5 Limitations of Python
While Python is a popular and powerful programming language, it has some
limitations that developers should be aware of. Here are some of the main
limitations of Python:

1. Performance: Python is an interpreted language, which means that it is
generally slower than compiled languages like C++ or Java. This can be
a limitation when developing applications that require high performance
or low latency, such as real-time systems or high-transaction web
applications.

2. Global Interpreter Lock (GIL): The GIL is a mechanism that ensures
that only one thread executes Python bytecode at a time. This can limit
the ability of developers to take advantage of multiple processors or
cores, which can impact performance.

3. Weak typing: While dynamic typing is a key feature of Python, it can
also be a limitation in some cases. Without type checking, errors can go
undetected until runtime, and the lack of strong typing can make it more
difficult to reason about code and catch errors early.

6. Mobile development:

While Python can be used to develop mobile
applications, it is not as well-suited to mobile development as other
languages, such as Java or Kotlin. This is because the Android and iOS
ecosystems are primarily based on those languages, and they offer more
robust support for mobile development.

Introduction to Python Language 7

5. Memory consumption:
 Python is known for its high memory
consumption, which can be a limitation when developing applications
that need to run on low-memory devices or in constrained environments.

6. Dependencies and version compatibility:
 Python has a large and
active community of developers who create and maintain many useful
third-party modules and libraries. However, this can lead to version
compatibility issues and dependency management challenges.

It’s worth noting that many of these limitations can be mitigated by using best
practices, such as optimizing code, using appropriate libraries, and following
good design principles. Despite these limitations, Python remains a popular
and versatile language that is well-suited to many different applications

1.6 Major Applications of Python
Python is a versatile language that can be used for many different applications,
from web development to scientific computing. Here are some of the major
applications of Python:

1. Web development: Python is widely used for web development, both
on the server-side and the client-side. Popular web frameworks include
Django, Flask, Pyramid, and Bottle.

2.

Data analysis and scientific computing: Python has become a popular
language for data analysis and scientific computing, thanks to libraries
such as NumPy, Pandas, SciPy, and Matplotlib. These libraries provide
support for numerical operations, data manipulation, statistical analysis,
and data visualization.

3.

Machine learning and artificial intelligence: Python is widely used in
the field of machine learning and artificial intelligence, thanks to libraries
such as TensorFlow, Keras, PyTorch, and Scikit-learn. These libraries
provide support for deep learning, neural networks, natural language
processing, and other AI applications.

4. Desktop applications: Python can be used to develop desktop
applications with graphical user interfaces (GUIs), thanks to libraries
such as PyQt, PyGTK, and wxPython.

5. Game development: Python is increasingly being used in the field of
game development, thanks to libraries such as Pygame and Panda3D.

6. Automation and scripting: Python is a popular language for automation
and scripting tasks, thanks to its simple syntax and extensive library
support.

8 Python Programming: A Step-by-Step Guide to Learning the Language

7. DevOps: Python is used in DevOps for automation, testing, and
deployment, thanks to libraries such as Fabric and Ansible.

8. Education: Python is a popular language for teaching programming,
thanks to its simple syntax and ease of use.

Overall, Python is a versatile language that can be used for many different
applications, and its popularity and extensive library support make it a
valuable tool for developers in many fields.

1.7 Getting Python
Python can be downloaded for free from the official Python website, which
provides installers for Windows, macOS, and Linux. Here are the steps to
get Python:

1. Go to the Python website: Visit the official Python website at https://
www.python.org/ and click on the “Downloads” link at the top of the
page.

2. Select your operating system: Choose your operating system from the
list of available options. You can choose between Windows, macOS, and
a variety of Linux distributions.

3. Choose your Python version: Python is available in two major versions,
Python 2 and Python 3. While Python 2 is still in use, it is no longer
actively developed and new users are advised to use Python 3. Choose
the version of Python that you want to install.

4. Download the installer: Once you have chosen your operating system
and Python version, download the installer for your system.

5. Run the installer: Run the installer on your computer and follow the
on-screen instructions to complete the installation process.

After the installation process is complete, you should have access to the
Python interpreter and the Python standard library. You can also use an
integrated development environment (IDE) such as PyCharm, Spyder, or
Jupyter Notebook to write and run Python code.

1.8 Installing Python
Python is a cross-platform programming language, with distributions
available for multiple operating systems. To install Python, you can download
the binary code for your platform from the official website, and run the
installation process. In the event that the binary code is not available for

https://www.python.org
https://www.python.org

Introduction to Python Language 9

your platform, you can compile the source code manually using a C compiler.
The installation process for Python may differ slightly depending on the
platform, and specific instructions can be found on the official website for
each platform, such as Unix or Linux.

1.8.1 Unix and Linux Installation
Here are the general steps to install Python on Unix or Linux:

1. Open a terminal window.
2. Check if Python is already installed on your system by typing “python”

or “python3” into the terminal. If Python is already installed, the version
number will be displayed. If Python is not installed, you will see an error
message.

3. If Python is not installed, you can install it using your system’s package
manager. The command may differ depending on your distribution, but
some examples are:
• Ubuntu/Debian: sudo apt-get install python3
• Red Hat/Fedora: sudo yum install python3
• Arch Linux: sudo pacman -S python

4. Once the installation is complete, you can verify that Python is installed
by typing “python” or “python3” into the terminal.

5. Optionally, you can install a Python IDE or code editor to make it easier
to write and run Python code. Popular options include PyCharm, Spyder,
Visual Studio Code, and Jupyter Notebook.

1.8.2 Windows Installation
Here are the general steps to install Python on Windows:

1. Go to the official Python website at https://www.python.org/downloads/
and download the latest version of Python 3.x for Windows.

2. Once the installer is downloaded, run the executable file to begin the
installation process.

3. In the installation wizard, select “Add Python 3.x to PATH” so that
Python can be accessed from the command line and other applications.

4. Choose the “Customize installation” option and make sure that “pip”
is selected. This is a package manager that allows you to easily install
third-party Python packages.

https://www.python.org

10 Python Programming: A Step-by-Step Guide to Learning the Language

5. Continue with the installation
process by following the on-screen
prompts, such as selecting the installation location and accepting the
license agreement.

6. Once the installation is complete, you can verify that Python is installed
by opening the command prompt and typing “python” followed by the
Enter key. This should launch the Python interpreter.

7. Optionally, you can install a Python IDE or code editor to make it easier
to write and run Python code. Popular options include PyCharm, Spyder,
Visual Studio Code, and Jupyter Notebook.

1.8.3 Macintosh Installation
Here are the general steps to install Python on a Macintosh:

1. Go to the official Python website at https://www.python.org/downloads/
and download the latest version of Python 3.x for Mac.

2. Once the installer is downloaded, open it by double-clicking the .dmg
file.

3. Double-click the “Python.mpkg” file to begin the installation process.
4. Follow the on-screen prompts to customize your installation settings,

such as the installation directory and any additional components you
want to include. The default settings are usually fine for most users.

5. Once the installation is complete, you can verify that Python is installed
by opening a terminal window and typing “python3” followed by the
Enter key. This should launch the Python interpreter.

6. Optionally, you can install a Python IDE or code editor to make it easier
to write and run Python code. Popular options include PyCharm, Spyder,
Visual Studio Code, and Jupyter Notebook.

1.9 Setting up Path
Directories can contain various programs and executable files, which means
that Windows, Unix/Linux, or MAC operating systems must have a way of
finding these files. To locate executable files, the operating system provides
a search path that includes directories. This search path is stored in an
environment variable, which is a named string that contains information that
can be accessed by the command shell and other programs.

https://www.python.org

Introduction to Python Language 11

1.9.1 Setting up Path at Unix/Linux
To set up the PATH for Python on Unix/Linux, follow these steps:

1. Open a terminal window.
2. Type “nano ~/.bashrc” to open your Bash profile file in the nano text

editor.
3. Add the following line to the end of the file, replacing “3.9” with your

version of Python:

export

PATH=”/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/
local/python3.9/bin”

4. Save the file by pressing Ctrl + X, then Y, then Enter.
5. Type “source ~/.bashrc” to apply the changes to your current terminal

session.
6. You can now run the “python” command from any directory in the

terminal.

1.9.2 Setting up the Path at Windows
To set up the PATH for Python on Windows, follow these steps:

1. Right-click on “This PC” or “My Computer” and select “Properties”.
2. Click on “Advanced system settings”.
3. Click on the “Environment Variables” button at the bottom.
4. Under “System Variables”, find the “Path” variable and click “Edit”.
5. Click “New” and enter the path to your Python installation directory

(e.g. C:\Python39).
6. Click “OK” to close all windows.
7. Open a new command prompt window and type “python” to verify that

the PATH has been set up correctly.

1.10 Python Environment Variables
Python uses environment variables to store configuration settings and other
system information that can be accessed by your code. Here are some common
Python environment variables:

12 Python Programming: A Step-by-Step Guide to Learning the Language

1. Path: This variable contains a list of directories where the operating
system searches for executable files, including the Python interpreter.
When you type “python” in the command prompt, the operating system
looks for the “python.exe” file in these directories.

2. Pythonpath: This variable contains a list of directories where Python
looks for modules and packages. You can add your own directories
to this list to make your own modules and packages available to your
Python code.

3. Pythonhome: This variable points to the root directory of your Python
installation. If you move your Python installation to a different directory,
you can update this variable to point to the new location.

4. Pythonstartup: This variable points to a Python script that is executed
every time you start the Python interpreter. You can use this script to
define your own Python environment, such as importing modules,
defining functions, or setting default values.

5. Pythonioencoding: This variable sets the default encoding for input
and output streams, such as stdin, stdout, and stderr. By default, Python
uses the system’s default encoding, but you can change it to a different
encoding if needed.

These are just a few examples of Python environment variables. You can
access and modify them using the os module in Python.

1.11 Running Python
To run Python code, you first need to install Python on your computer. You
can download and install the latest version of Python from the official website:
https://www.python.org/downloads/. Once you have installed Python, you
can run it in several ways:

1. Using the Python shell: The Python shell is an interactive environment
that allows you to run Python code line by line. To open the Python
shell, simply type “python” in your terminal or command prompt.

2. Using a text editor: You can write your Python code in a text editor,
save it with a .py file extension, and then run it from the command
prompt by typing “python filename.py”.

3. Using an Integrated Development Environment (IDE): An IDE
provides a more advanced environment for writing, debugging, and

https://www.python.org

Introduction to Python Language 13

running Python code. Some popular IDEs for Python include PyCharm,
Visual Studio Code, and Spyder.

Once you have Python installed and set up, you can start writing and running
Python code to perform various tasks and solve problems.

1.11.1 Interactive Interpreter
The interactive interpreter in Python is a command-line interface that allows
you to enter Python commands and immediately see the results of those
commands. It’s a great way to experiment with Python and test out code
snippets before incorporating them into a larger program.

To launch the Python interpreter, open a terminal or command prompt and
type python followed by the Enter key. This will launch the interactive
interpreter and display the Python version number and a command prompt
(>>>).

You can then enter Python commands at the prompt and see the output
immediately. For example, you could type print(“Hello, World!”) and press
Enter, and the interpreter would immediately display the output Hello, World!.

You can exit the interactive interpreter by typing exit() or quit() at the
command prompt and pressing Enter. This will return you to the terminal or
command prompt.

1.11.2 Script from the Command-Line
You can run a Python script from the command-line by typing python
followed by the name of the script file. Here’s an example:

Suppose you have a script called hello.py that contains the following code:

print(“Hello, World!”)

To run this script, open a terminal or command prompt and navigate to the
directory where hello.py is saved. Then, type the following command and
press Enter:

python hello.py

This will execute the script, and you should see the output Hello, World! in
the terminal or command prompt.
You can also pass command-line arguments to a Python script by including
them after the script name. For example, if you have a script called add.py

14 Python Programming: A Step-by-Step Guide to Learning the Language

that takes two numbers as arguments and adds them together, you could run
it with the following command:

python add.py 2 3

This would execute the script with the arguments 2 and 3, and the output
would be 5.
Note that in order to run a Python script from the command-line, you must
have Python installed on your computer and the Python executable must be
in your system’s PATH variable.

1.11.3 Integrated Development Environment
An Integrated Development Environment (IDE) is a software application that
provides a comprehensive environment for writing, testing, and debugging
software code. Python has many popular IDEs that provide features like
syntax highlighting, code completion, debugging tools, and more. Some
popular Python IDEs include:

1. PyCharm: PyCharm is a powerful and full-featured IDE for Python. It
includes advanced code completion, debugging tools, and support for
web development frameworks like Django and Flask.

2. Visual Studio Code: Visual Studio Code is a lightweight and versatile
IDE that supports a wide range of programming languages, including
Python. It includes features like syntax highlighting, code completion,
and debugging tools.

3. Spyder: Spyder is an IDE designed specifically for scientific computing
and data analysis in Python. It includes features like variable explorer,
data viewer, and plotting tools.

4. IDLE: IDLE is a simple and lightweight IDE that comes bundled with
Python. It includes basic features like syntax highlighting and debugging
tools.

There are many other IDEs available for Python, and the best one for you will
depend on your specific needs and preferences. You can download and install
most Python IDEs for free, and they are available for all major operating
systems.

1.12 First Python Program
Python is a popular high-level programming language that is known for
its simplicity, readability, and versatility. It is widely used for a variety of

Introduction to Python Language 15

purposes, including web development, data analysis, machine learning, and
more.

One of the reasons that Python is so popular is its syntax, which is designed
to be easy to read and write. For example, instead of using curly braces and
semicolons to denote code blocks and statements, Python uses whitespace
and indentation. Here is an example of a simple Python program that prints
a message to the console:

print(“Hello, World!”)

This program simply uses the print() function to display the message “Hello,
World!” on the console. You can save this code to a file with a .py extension,
such as hello.py, and then execute it from the command line by typing python
hello.py.

1.12.1 Interactive Mode Programming
In Python, you can also run programs in interactive mode, which allows you
to enter code directly into the Python interpreter and immediately see the
output. This is a great way to experiment with Python and test out code
snippets before incorporating them into a larger program.

To launch the interactive interpreter in Python, open a terminal or command
prompt and type python followed by the Enter key. This will launch the
interpreter and display the Python version number and a command prompt
(>>>).

You can then enter Python commands at the prompt and see the output
immediately. For example, you could type print(“Hello, World!”) and press
Enter, and the interpreter would immediately display the output Hello, World!.

In interactive mode, you can also define variables, create functions, and
import modules, just as you would in a regular Python program. For example,
you could define a variable like this:

x = 5

And then use it in a calculation like this:

y = x * 2

print(y)

This would define a variable x with the value 5, and then define a variable y
with the value 10 (which is the result of multiplying x by 2). Finally, it would
print the value of y to the console.

16 Python Programming: A Step-by-Step Guide to Learning the Language

You can exit the interactive interpreter by typing exit() or quit() at the
command prompt and pressing Enter. This will return you to the terminal or
command prompt.

1.12.2 The Script Mode Programming
In addition to running Python code in interactive mode, you can also write
code in a file and run it as a script. This is a common way to write larger
Python programs that can be executed from the command line or scheduled
to run automatically.

To create a Python script, simply create a new file with a .py extension and
write your code in it using a text editor or integrated development environment
(IDE). For example, you could create a file called hello.py and write the
following code:

print(“Hello, World!”)

To run this script, you can execute it from the command line by typing python
hello.py and pressing Enter. This will run the script and print the message
“Hello, World!” to the console.

In a Python script, you can include any valid Python code, including
importing modules, defining functions, and using control structures like loops
and conditionals. For example, you could write a more complex script that
asks the user for their name and then greets them:

name = input(“What is your name? “)

print(“Hello, “ + name + “!”)

This script would prompt the user to enter their name using the input()
function, and then use string concatenation to print a personalized greeting.

Overall, writing Python scripts is a powerful way to build complex programs
that can be used in a variety of contexts. With a little practice, you can use
Python to automate repetitive tasks, process data, and build sophisticated
applications.

1.13 Python’s Interactive Help
Python comes with a built-in help utility, which is one of the major features
and support of Python language. The prerequisite of using the built-in help
of Python, you must have a little knowledge of programming. For a new

Introduction to Python Language 17

programmer, it could be a bit off-putting. Once a programmer becomes
familiar with programming terminology then he can make great use of the
built-in help provided by Python. Python programming help can be obtained
in the following ways:

• Interactive mode help
• Getting help online through a web browser

1.13.1 Python Help Through a Web Browser
Python has an extensive standard library, as well as a large and active
community of developers who have created many third-party modules and
libraries. As a result, there are many resources available for getting help with
Python online.

One popular resource is the Python documentation, which is available online
in a web browser at the official Python website (https://www.python.org/). The
documentation includes a detailed language reference, as well as tutorials and
guides for getting started with Python, building web applications, working
with data, and more.

In addition to the official Python documentation, there are many online forums
and communities where you can ask questions and get help with Python.
For example, the Python subreddit (https://www.reddit.com/r/Python/) is a
popular forum where Python users can ask questions, share code snippets,
and get advice from other developers.

There are also many third-party websites and services that offer Python
tutorials, courses, and other learning resources. For example, Codecademy
(https://www.codecademy.com/learn/learn-python) offers a comprehensive
Python course for beginners, while Udemy (https://www.udemy.com/topic/
python/) has a wide range of Python courses for learners of all levels.

Overall, there are many resources available for getting help with Python
online, and the best approach will depend on your specific needs and learning
style. Whether you’re a beginner or an experienced developer, there are many
ways to learn and grow your skills with Python.

1.14 Python Differences From Other Languages
While the Python language shares some similarities with C, C++, and Java,
there are also distinct differences that set it apart from these languages.

https://www.python.org
https://www.reddit.com
https://www.codecademy.com
https://www.udemy.com
https://www.udemy.com

18 Python Programming: A Step-by-Step Guide to Learning the Language

1.14.1 Difference Between C and Python
C and Python are both popular programming languages, but they differ in
several ways. Here are some of the main differences between C and Python:

1. Syntax: C uses a more complex syntax than Python. C requires more
code to accomplish the same tasks as Python, and it also has stricter rules
for formatting and organization.

2. Compiled vs. Interpreted:
 C is a compiled language, meaning that
the code is translated into machine code by a compiler before it can be
executed. Python, on the other hand, is an interpreted language, meaning
that the code is executed directly by an interpreter.

3. Typing: C is a statically typed language, meaning that the type of each
variable is declared explicitly in the code. Python, on the other hand, is
a dynamically typed language, meaning that the type of each variable is
determined at runtime.

4. Memory Management:
 C requires manual memory management,
meaning that the programmer must explicitly allocate and deallocate
memory for variables and data structures. Python, on the other hand, has
automatic memory management, meaning that the interpreter takes care
of memory allocation and deallocation.

5. Application: C is often used for low-level systems programming, such
as operating systems, device drivers, and embedded systems, as well as
for high-performance computing and graphics programming. Python is
often used for web development, data analysis, scientific computing, and
automation.

6. Object-Oriented Programming: While C supports object-oriented
programming (OOP), it is not a pure OOP language like Python. Python
is designed to support OOP concepts such as encapsulation, inheritance,
and polymorphism, making it easier to write and organize code for larger
projects.

7. Platform Independence: Python is more platform-independent than C,
meaning that Python code can run on a variety of operating systems and
hardware without modification. C code, on the other hand, may need to
be recompiled for different platforms or architectures.

8. Libraries and Packages: Python has a vast library of built-in modules
and third-party packages that make it easy to perform a wide range of
tasks, from web scraping to machine learning. C has a smaller standard

Introduction to Python Language 19

library and fewer third-party packages, making it more difficult to find
pre-built solutions for common programming problems.

9. Debugging: Debugging C code can be more challenging than debugging
Python code, due to C’s lower-level nature and manual memory
management. Python has built-in debugging tools and a more forgiving
syntax, making it easier to locate and fix errors in code.

10. Learning Curve: Python is generally considered to be easier to learn and
use than C, due to its simpler syntax, automatic memory management,
and built-in data structures. C requires a deeper understanding of
computer architecture and low-level programming concepts, making it
more difficult to learn and master.

These are just a few of the many differences between C and Python. While
they share some similarities, they are distinct languages with their own
strengths and weaknesses, and the choice of language will depend on the
specific needs of the project and the preferences of the programmer.

1.14.2 Difference Between C++ and Python
C++ and Python are both popular programming languages, but they differ
in several ways. Here are some of the main differences between C++ and
Python:

1. Syntax: C++ uses a more complex syntax than Python. C++ requires
more code to accomplish the same tasks as Python, and it also has stricter
rules for formatting and organization.

2. Compiled vs. Interpreted: C++ is a compiled language, meaning that
the code is translated into machine code by a compiler before it can be
executed. Python, on the other hand, is an interpreted language, meaning
that the code is executed directly by an interpreter.

3. Typing: C++ is a statically typed language, meaning that the type of
each variable is declared explicitly in the code. Python, on the other
hand, is a dynamically typed language, meaning that the type of each
variable is determined at runtime.

4. Memory Management:
 C++ requires manual memory management,
meaning that the programmer must explicitly allocate and deallocate
memory for variables and data structures. Python, on the other hand, has
automatic memory management, meaning that the interpreter takes care
of memory allocation and deallocation.

20

 Python Programming: A Step-by-Step Guide to Learning the Language

5. Object-Oriented Programming: Both C++ and Python support object-
oriented programming (OOP), but C++ is often considered a “pure” OOP
language, meaning that all code is organized into objects and classes.
Python, on the other hand, allows for more procedural and functional
programming styles as well.

6. Application:
 C++ is often used for systems programming, such as
operating systems and device drivers, as well as for high-performance
computing, gaming, and graphics programming. Python is often used for
web development, data analysis, scientific computing, and automation.

7.

Libraries and Packages: Python has a vast library of built-in modules
and third-party packages that make it easy to perform a wide range
of tasks, from web scraping to machine learning. C++ has a smaller
standard library and fewer third-party packages, making it more difficult
to find pre-built solutions for common programming problems.

8. Speed:
 C++ is generally faster than Python because it is a compiled
language, meaning that the code is translated into machine code before
it is executed. Python, on the other hand, is an interpreted language,
meaning that the code is executed directly by an interpreter, which can
be slower. However, Python has some libraries that are implemented in
C or C++ that can boost its performance.

9. Learning Curve: C++ is generally considered more difficult to learn
and use than Python. C++ has a steep learning curve because it is a more
complex language with a larger number of features and more stringent
syntax rules. Python, on the other hand, has a simpler syntax and a
smaller set of features, making it easier to learn and use.

10. Type Safety: C++ is a type-safe language, meaning that the compiler
checks for type errors at compile time. Python is not type-safe, meaning
that type errors can occur at runtime.

11.

Multithreading: C++ has built-in support for multithreading, allowing
programs to execute multiple threads of code concurrently. Python also
supports multithreading, but it has a global interpreter lock (GIL) that
can limit the performance gains of multithreading in some cases.

12. Portability: Python is more portable than C++ because it is a high-level
language that can be interpreted on any platform. C++ code must be
compiled on the specific platform it will run on, which can make it less
portable.

Introduction to Python Language 21

13. Memory Safety: C++ is a language that provides the programmer with
the ability to manually manage memory. While this gives the programmer
more control over how memory is used, it also means that the program
can be susceptible to memory-related bugs, such as buffer overflows
and memory leaks. Python has built-in garbage collection, meaning that
it automatically manages memory, which makes it less susceptible to
memory-related bugs.

These are just a few of the many differences between C++ and Python. While
both languages are widely used and powerful, they have different strengths
and weaknesses, and the choice of language will depend on the specific needs
of the project and the preferences of the programmer.

1.14.3 Difference between Java and Python
Java and Python are both popular programming languages, but they differ
in several ways. Here are some of the main differences between Java and
Python:

1. Syntax: Java has a more complex syntax than Python. Java requires more
code to accomplish the same tasks as Python, and it also has stricter rules
for formatting and organization

2. Compiled vs. Interpreted: Java is a compiled language, meaning that
the code is translated into bytecode by a compiler before it can be
executed. Python, on the other hand, is an interpreted language, meaning
that the code is executed directly by an interpreter.

3. Typing: Java is a statically typed language, meaning that the type of
each variable is declared explicitly in the code. Python, on the other
hand, is a dynamically typed language, meaning that the type of each
variable is determined at runtime.

4. Memory Management: Java has automatic memory management,
meaning that the JVM (Java Virtual Machine) takes care of memory
allocation and deallocation. Python also has automatic memory
management, meaning that the interpreter takes care of memory allocation
and deallocation.

5. Object-Oriented Programming: Both Java and Python support object-
oriented programming (OOP), and they have similar concepts such as
inheritance, polymorphism, and encapsulation. However, Java is often
considered a “pure” OOP language, meaning that all code is organized

22 Python Programming: A Step-by-Step Guide to Learning the Language

into objects and classes. Python, on the other hand, allows for more
procedural and functional programming styles as well.

6. Application: Java is often used for web development, desktop application
development, and mobile app development. Python is often used for web
development, scientific computing, data analysis, machine learning, and
automation.

7.

Performance: Java is generally faster than Python because it is
a compiled language, and the JVM can optimize the bytecode for
performance. Python, on the other hand, is an interpreted language,
meaning that the code is executed directly by an interpreter, which can
be slower. However, Python has some libraries that are implemented in
C or C++ that can boost its performance.

8. Garbage Collection: Java has a more advanced garbage collector than
Python, meaning that it can handle memory more efficiently.

9. Learning Curve: Java is generally considered more difficult to learn
and use than Python. Java has a steep learning curve because it is a more
complex language with a larger number of features and more stringent
syntax rules. Python, on the other hand, has a simpler syntax and a
smaller set of features, making it easier to learn and use.

These are just a few of the many differences between Java and Python. While
both languages are widely used and powerful, they have different strengths
and weaknesses, and the choice of language will depend on the specific needs
of the project and the preferences of the programmer.

1.15 Summary
In this chapter, we have learned about the programming language and its
needs. Then we gave a brief look at the origin and history of the Python
language along with its features and limitations. We have explored in detail
how Python language differs from other existing and prominent programming
languages such as C,C++, and Java. The setup and installation of Python
language along with a simple first program are also discussed in detail.

Review Questions
1. What is Python and what makes it a popular programming language?
2. How does Python differ from other programming languages?

Introduction to Python Language 23

3. What is the history of the Python programming language and who
developed it?

4. What are the steps to install Python on different operating systems?
5. What are the benefits of using Python for software development?
6. What are the key features of Python, and how do they contribute to its

popularity?
7. How does the Python community support and contribute to the language’s

development?
8. What are some popular applications built using Python?
9. How does Python compare with other programming languages like Java,

C++, and Ruby?
10. What are the most important considerations when choosing a programming

language, and how does Python measure up?
11. What is Python and how is it used?
12. Python is
a high-level programming language used for a variety of

applications, including web development, data analysis, artificial
intelligence, and more.

13. Python is a type of reptile found in tropical regions around the world.
14. What are some key features of the Python programming language?

a.
 Python has a simple and easy-to-learn syntax.
b.
 Python is an interpreted language, meaning that code is executed

directly by an interpreter without the need for compilation.

https://taylorandfrancis.com

 	 	 	

2

Python Data Types and
Input Output

Highlights
l Keywords
and
 identifiers

l Python statements

l Documentation and indentation

l Python Variables

l Python data types

l Input and output

l Import

Python has several built-in data types including strings, integers, and
lists. These data types can be used to store and manipulate different kinds
of information in a program. In addition to these basic data types, Python
also has advanced data types such as dictionaries and sets.

Python also has a built-in module for input/output operations, which
allows a program to read from and write to external sources, such as files
and streams. The module, called io, provides several functions to perform
these operations, such as open(), read(), and write().

2.1 Keywords
In Python, a keyword is a word that has a special meaning in the Python
language. Keywords are used to define the syntax and structure of the

26 Python Programming: A Step-by-Step Guide to Learning the Language

Python language, and they cannot be used as identifiers (i.e., variable names,
function names, etc.) in Python code.

Keyword Description
and Logical operator returns True if both operands are True,

otherwise, it returns False.
as Used to create an alias for a module or variable when

importing or renaming.
assert Used to check if a given condition is True, and raises an

exception if it is False.
async Used to define an asynchronous function or context manager.
await Used inside an async function to wait for an asynchronous

operation to complete.
break Used to exit a loop early, before the loop condition is met.
class Used to define a new class.
continue Used to skip the current iteration of a loop and continue with

the next iteration.
def Used to define a new function.
del Used to delete an object or an item from a collection.
elif Short for “else if”, used in a conditional statement to check

for additional conditions.
else Used in a conditional statement as a catch-all option if no

other conditions are met.
except Used to handle exceptions that are raised in a try block.
False Boolean value that represents the absence of truth.
finally Used in a try-except block to specify a block of code that

will always be executed, regardless of whether an exception
was raised or not.

for Used to iterate over a sequence of items, such as a list or a
tuple.

from Used in an import statement to import specific items from
a module.

global Used to indicate that a variable is a global variable, accessible
from anywhere in the code.

if Used to start a conditional statement.
import Used to import a module or a specific item from a module.

Python Data Types and Input Output 27

Keyword Description
in Used to check if an item is in a sequence, such as a list or

a tuple.
is Used to check if two variables refer to the same object.
lambda Used to create small anonymous functions.
None Special value that represents the absence of a value or a null

value.
nonlocal Used to indicate that a variable is nonlocal to the current

function, meaning it is defined in an outer function.
not Logical operator that negates a boolean value.
or Logical operator that returns True if at least one of the

operands is True, otherwise it returns False.
pass Used as a placeholder for a block of code that does nothing.
raise Used to raise an exception.
return Used to exit a function and return a value to the calling code.
True Boolean value that represents the presence of truth.
try Used to specify a block of code that might raise an exception.
while Used to start a loop that will continue to execute as long as

the loop condition is True.
with Used to create a context manager, which is used to

automatically set up and tear down resources.
yield Used in a function

2.2  Identifiers

In Python, an identifier is a name used to identify a variable, function, class,
module, or other objects. There are a few rules and conventions for naming
identifiers in Python:

• Identifiers must start with a letter or an underscore (_).
• Identifiers cannot start with a number.
• Identifiers can only contain letters, numbers, and underscores.
• Identifiers
 are case-sensitive, so myVariable and myvariable are

considered to be different identifiers.
• Python reserves a set of keywords that cannot be used as identifiers.

Examples include if, else, for, class, etc.

28 Python Programming: A Step-by-Step Guide to Learning the Language

• Identifiers should be descriptive and meaningful, using camelCase or
snake_case, depending on the project’s style guide.

Examples of valid identifiers in Python:

• myVariable
• _privateVariable
• counter
• calculate_average
• MyClass

Examples of invalid identifiers in Python:

• 1stVariable (starts with a number)
• my-variable (contains a hyphen)
• if (reserved keyword)
• True (reserved keyword)
• class (reserved keyword)

2.3 Python Statements
In Python, a statement is a single line of code that performs a specific action
or instruction. There are several types of statements in Python, including:

•

Expressions: These are statements that evaluate to a value, such as
mathematical operations or function calls. Examples include “2 + 2” or
“print(‘Hello, world!’)”.

•

Assignment statements: These are statements that assign a value to a
variable. Examples include “x = 2” or “name = ‘John’”.

•

Control flow statements: These are statements that control the flow
of execution of a program, such as conditional statements (if/else) and
loops (for/while).

•

Function and class definitions: These are statements that define a
function or class, respectively. Examples include “def my_function():”
and “class MyClass:”.

•

Import statements: These statements are used to import modules or
packages in python. Examples include “import os” or “from math import
sqrt”

Python Data Types and Input Output 29

•

Pass statements: A pass statement is a null operation. Nothing happens
when it executes. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed.

2.4 Indentation
Indentation is used in Python to indicate blocks of code. The standard
indentation is four spaces, and most Python code follows this convention.
For example

Code 2.1 Illustration of indentation in Python

def foo():

This line is indented by four spaces

x = 5

if x > 0:

This line is also indented by four spaces

print(“x is positive”)

This line is not indented, so it’s not part of the if block

It is important to be consistent with your indentation, as the meaning of the
code can change based on the indentation level. For example

Code 2.2 Illustration of indentation in Python

x = 5

if x > 0:

print(“x is positive”)

print(“This line is not indented, so it’s not part of the if block”)

This code will print both messages because the second print statement is not
indented, so it is not part of the if block.

Code 2.3 Illustration of indentation in Python

x = 5

if x > 0:

print(“x is positive”)

print(“This line is indented, so it is part of the if block”)

print(“This line is not indented, so it’s not part of the if block”)

30 Python Programming: A Step-by-Step Guide to Learning the Language

This code will only print the first message, because the second print statement
is indented, so it is part of the if block.

2.5 Python Documentation
In Python, documentation is typically included in the form of comments
in the source code. These comments start with a # symbol, and everything
following the # on that line is considered a comment. For example:

Code 2.4 Illustration of documentation in Python using #

This is a comment

x = 5 # This is also a comment

2.5.1 Single Line Comment
In Python, a single line comment is created by placing the “#” symbol at the
beginning of the line, followed by the text of the comment. For example:

Code 2.5 Illustration of single line documentation in Python

This is a single line comment in Python
x = 10 # This is also a single line comment

The text following the “#” symbol is ignored by the Python interpreter and is
only there for the benefit of the person reading the code. Single line comments
are often used to add brief explanations or clarifications to the code.

Code 2.6 Illustration of single line documentation in Python

Calculate the area of a rectangle
width = 3
height = 12
area = width * height

In this example, the single line comments provide some context for the code
that follows, explaining what the variables are used for and what the final
line of code is doing.

2.5.2 Multi Line Comments
In Python, multi-line comments can be created using triple quotes, either
single quotes (‘’’) or double quotes (“””). The comments can span multiple

Python Data Types and Input Output 31

lines and are commonly used for longer explanations and docstrings. Here is
an example:

Code 2.7 Illustration of double quotes in Python

“””

This is a multiline

comment. It can span

multiple lines.

“””

You can also use triple single quotes to create a multiline comment:

Code 2.8 Illustration of single quotes in Python

‘’’

This is also a

multiline comment. It

can also span multiple

lines.

‘’’

Both triple quotes (single or double) can be used to create a multiline
comment in Python. The advantage of using triple quotes is that you can
create a multiline comment even if it contains multiple lines of the same type
of quote character.

2.6 Docstrings
In Python, a docstring is a string literal that appears as the first statement
in a module, function, class, or method definition. It is used to provide
documentation for the code, and can be accessed using the built-in help()
function or the __doc__ attribute. Docstrings are enclosed in triple quotes
(either single or double) and are typically written in plain text, but can also

include markdown formatting.

It is a good practice to include a docstring in any function or class you write,

as it makes your code more readable and user-friendly.

Here is an example of a simple Python function with a docstring:

32 Python Programming: A Step-by-Step Guide to Learning the Language

Code 2.9 Illustration of docstring in Python

def add(a, b):

“””

This function takes two numbers as input and returns their sum.

Parameters:

a (int): The first number

b (int): The second number

Returns:

int: The sum of a and b

“””

return a + b

In this example, the function add takes two numbers as input, adds them
together, and returns the result. The docstring provides a brief description of
what the function does, and explains the parameters and return value.

To access the docstring of this function, you can use the help() function like
this:

help(add)

You can also access the docstring programmatically using the __doc__
attribute:

print(add.__doc__)

This will output the same string as the docstring.

By providing clear and concise documentation, it’s easy for other developers
to understand how the function works, what the parameters are and what to
expect when calling the function. This can save a lot of time and effort when
working on large projects with multiple contributors.

2.7 Variables
A Python variable is a reserved memory location to store values. In other
words, a variable in a python program gives data to the computer for

300

300

Python Data Types and Input Output 33

processing. Every value in Python has a datatype. Different data types in
Python are Numbers, List, Tuple, Strings, Dictionary, etc. Variables can be
declared by any name or even alphabets like a, aa, abc, etc.

2.7.1 Variable Assignment
Think of a variable as a name attached to a particular object. In Python,
variables need not be declared or defined in advance, as is the case in many
other programming languages. To create a variable, you just assign it a value
and then start using it. The assignment is done with a single equals sign (=):

n = 300

This is read or interpreted as “n is assigned the value 300.” Once this is done,
n can be used in a statement or expression, and its value will be substituted:

print(n)

Just as a literal value can be displayed directly from the interpreter prompt in
a REPL session without the need for print(), so can a variable:

n

Later, if you change the value of n and use it again, the new value will be
substituted instead:

n = 1000

print(n)

1000

Python also allows chained assignment, which makes it possible to assign the
same value to several variables simultaneously:

Code 2.10 Illustration of variable in Python

a = b = c = 300

print(a, b, c)

300 300 300

2.7.2 Variable Types in Python
In many programming languages, variables are statically typed. That means
a variable is initially declared to have a specific data type, and any value

34 Python Programming: A Step-by-Step Guide to Learning the Language

assigned to it during its lifetime must always have that type. Variables in
Python are not subject to this restriction. In Python, a variable may be
assigned a value of one type and then later re-assigned a value of a different
type:

Code 2.11 Illustration of variable in Python

var = 21.09

print(var)

21.09

Let’s see another example:

Code 2.12 Illustration of variable in Python

>>> var = “Welcome to Python”

>>> print(var)

Welcome to Python

2.8 Multiple Assignment
Multiple assignment allows you to assign multiple variables at the same time
in one line of code. This feature often seems simple after you’ve learned
about it, but it can be tricky to recall multiple assignment when you need
it most. In this we’ll see what multiple assignment is, we’ll take a look at
common uses of multiple assignment, and then we’ll look at a few uses for
multiple assignment that are often overlooked.

Python’s multiple assignment looks like this:

>>> x, y = 10, 20

Here we’re setting x to 10 and y to 20.

What’s happening at a lower level is that we’re creating a tuple of 10, 20 and

then looping over that tuple and taking each of the two items we get from
looping and assigning them to x and y in order.

This syntax might make that a bit more clear:

>>> (x, y) = (10, 20)

Parenthesis are optional around tuples in Python and they’re also optional
in multiple assignment (which uses a tuple-like syntax). All of these are
equivalent:

Python Data Types and Input Output 35

Code 2.13 Illustration of variable in Python

>>> x, y = 10, 20

>>> x, y = (10, 20)

>>> (x, y) = 10, 20

>>> (x, y) = (10, 20)

Multiple assignments are often called “tuple unpacking” because it’s
frequently used with tuples. But we can use multiple assignments with any
iterable, not just tuples. Here we’re using it with a list:

Code 2.13 Illustration of variable in Python

>>> x, y = [10, 20]

>>> x

10

>>> y

20

And with a string:

Code 2.13 Illustration of a variable with a string in Python

>>> x, y = ‘hi’

>>> x

‘h’

>>> y

‘i’

Here’s another example to demonstrate that multiple assignments works with
any number of items and that it works with variables as well as objects we’ve
just created:

Code 2.14 Illustration of a variable in Python

>>> point = 10, 20, 30
>>> x, y, z = point
>>> print(x, y, z)
10 20 30
>>> (x, y, z) = (z, y, x)
>>> print(x, y, z)
30 20 10

36 Python Programming: A Step-by-Step Guide to Learning the Language

2.9 Python Data Types
Data types are the classification or categorization of data items. It represents
the kind of value that tells what operations can be performed on a particular
data. Since everything is an object in Python programming, data types are
actually classes and variables are instances (objects) of these classes.

Following are the standard or built-in data types of Python:

• Numeric
• Sequence Type
• Boolean
• Set
• Dictionary

Built in Data Types

Numeric Boolean Set DictionarySequence Type

Integer

Float Numbers

String

List

Tuples Complex numbers

In Python, there are several built-in data types that you can use to store values
in your program. These data types include

1. Integers:

These are whole numbers, both positive and negative. For
example 42, -7, 0.

2. Floating-point numbers: These are numbers with a decimal point, such
as 3.14 or -0.01.

3. Complex Numbers: These are the numbers that has both a real and an
imaginary component. For example 3+6j.

4. Strings:
These are sequences of characters, represented using quotes.
You can use single quotes (‘) or double quotes (“) to represent strings.
For example: ‘hello’, “world”, ‘42’.

5. Booleans: These represent truth values and can be either True or False.
6. Lists: These are ordered collections of other values. You can define a list

by enclosing a comma-separated sequence of values in square brackets
([]). For example: [1, 2, 3], [‘a’, ‘b’, ‘c’], [True, False].

Python Data Types and Input Output 37

7. Tuples: These are like lists, but they are immutable (i.e., you cannot
modify them). You can define a tuple by enclosing a comma-separated
sequence of values in parentheses (()). For example: (1, 2, 3), (‘a’, ‘b’,
‘c’), (True, False).

8. Sets: These are unordered collections of unique values. You can define a
set by enclosing a comma-separated sequence of values in curly braces
({}). For example: {1, 2, 3}, {‘a’, ‘b’, ‘c’}, {True, False}.

9. Dictionaries: These are unordered collections of key-value pairs. You
can define a dictionary by enclosing a comma-separated sequence of
key-value pairs in curly braces ({}). The key and value are separated by
a colon (:). For example: {‘a’: 1, ‘b’: 2, ‘c’: 3}, {‘a’: ‘A’, ‘b’: ‘B’, ‘c’:
‘C’}, {True: ‘Yes’, False: ‘No’}.

2.9.1 Numeric Datatype
In Python, the Number datatype includes integers (int), floating-point numbers
(float), and complex numbers (complex).

1. Integers: Integers are whole numbers without a decimal point, such as
1, 2, and 100.

2. Floating-point numbers have a decimal point, such as 3.14 and 2.71828.

3. Complex numbers
 have a real and imaginary component, such as
3 + 4j. Python also has support for arbitrary precision integers using the
‘decimal’ module and for large integers using the ‘bigint’ module.

2.9.1.1 Integers
In Python, an integer is a whole number that can be positive, negative, or
zero. It has no fractional part and is represented by a series of digits. For
example, the integers 123, -456, and 0 are all integers. To create an integer
in Python, you can simply assign a whole number to a variable. For example:

Code 2.15 Illustration of integer number data types

x = 123

y = -456

z = 0

You can also use the int() function to convert a string or a floating-point
number to an integer. For example

38 Python Programming: A Step-by-Step Guide to Learning the Language

Code 2.16 Illustration of floating-point number data types

x = int(“123”)
y = int(-456.7)
z = int(7.9)

In the second example, the float -456.7 is converted to the integer -456,
and in the third example, the float 7.9 is converted to the integer 7. You
can perform various arithmetic operations on integers, such as addition,
subtraction, multiplication, and division. For example

Code 2.17 Illustration of arithmetic operations

x = 2 + 3
y = 4 - 1
z = 2 * 3
w = 8 / 3

In Python, the / operator always performs floating-point division, even if
both operands are integers. To perform integer division, you can use the //
operator. For example:

x = 8 // 3

This will give the result 2, as the remainder is discarded in integer division.

You can also use the % operator to find the remainder of an integer division.
For example:

x = 8 % 3

This will give the result 2, as the remainder of 8 divided by 3 is 2.

2.9.1.2 Floating-point Numbers
In Python, a floating-point number is a numerical value with a decimal point.
For example, 3.14, 4.0, and 0.01 are all floating-point numbers. In Python,
you can use the “float” data type to represent a floating-point number. Here
are some examples of how to create and use floating-point numbers in Python:

Code 2.18 Illustration of floating-point number data types

x = 3.14 # assign the value 3.14 to x
y = 4.0 # assign the value 4.0 to y
z = 0.01 # assign the value 0.01 to z
You can perform arithmetic with floating-point numbers just like with integers:
a = x + y # a is now 7.14
b = y / z # b is now 400.0

Python Data Types and Input Output 39

It’s important to note that floating-point arithmetic is not always completely
precise. For example, the result of the expression “0.1 + 0.2” might not be
exactly 0.3 due to the way that computers represent and store decimal values.
However, this usually doesn’t cause any significant problems in practice.

2.9.1.3 Complex Numbers
In Python, a complex number is a number that has both a real and an imaginary
component. The real component is represented by a floating-point number,
and the imaginary component is represented by the letter “j” or “J”. You
can create a complex number by adding a real and an imaginary component
together, using the “+” operator. For example:

x = 3 + 4j

You can also create a complex number using the built-in complex() function.
For example:

x = complex(3, 4)

You can access the real and imaginary components of a complex number
using the real and imag attributes, respectively. For example:

Code 2.19 Illustration of complex number data types

x = 3 + 4j

print(x.real) # Output: 3.0

print(x.imag) # Output: 4.0

You can also perform mathematical operations with complex numbers, such
as addition, subtraction, multiplication, and division. For example:

Code 2.20 Illustration of mathematical operations with complex numbers

x = 3 + 4j

y = 2 + 3j

print(x + y) # Output: (5+7j)

print(x - y) # Output: (1+1j)

print(x * y) # Output: (-6+17j)

print(x / y) # Output: (1.6+0.4j)

40 Python Programming: A Step-by-Step Guide to Learning the Language

2.9.2 Strings
In Python, a string is a sequence of characters enclosed in quotation marks.
You can use either single quotes or double quotes to create a string. For
example:

string1 = ‘Hello, world!’

string2 = “Hello, world!”

Both of these expressions create a string with the value “Hello, world!”.

You can use the “+” operator to concatenate (join) two strings together. For
example:

Code 2.21 Illustration of Strings in Python

greeting = “Hello”
name = “Alice”
message = greeting + “, “ + name + “!”
print(message) # prints “Hello, Alice!”
repeat = “*” * 10

print(repeat) # prints “**********”

There are many other operations and methods available for working
with strings in Python. You can learn more about strings in the Python
documentation.

2.9.2.1 Indexing of a String:
In Python, strings can be indexed (i.e., reference a specific character in the
string) using square brackets [] and the index of the desired character. The
indexing starts from 0, so the first character has an index of 0, the second
character has an index of 1, and so on.

Here is an example:

Code 2.22 Illustration of indexing in Python

string = “Hello, World!”

print(string[0]) # Output: ‘H’

print(string[7]) # Output: ‘W’

Python Data Types and Input Output 41

2.9.2.2 Negative Indexing:
Python also allows negative indexing of a string that starts counting from the
right side of the string. The rightmost character has an index of -1, the second
character from the right has an index of -2, and so on.

0 1 2 3 4 5 6 7 8 9

H E L L O W O R L D

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2

Code 2.23 Illustration of negative indexing in Python

string = “HelloWorld”

print(string[-1]) # Output: ‘d’

print(string[-3]) # Output: ‘r’

2.9.2.3 Slicing
Negative indexing can use to extract a range of characters from a string
or to extract a substring from a string by specifying the start and end
index separated by a colon : , known as slicing. The syntax for slicing is
string[start:stop:step], where start is the index of the first character to include
stop is the index of the first character to exclude and step is the number of
indices between characters

Code 2.24 Illustration of slicing operator in Python

string = “Hello, World!”

print(string[7:12]) # Output: ‘World’

print(string[:5]) # Output: ‘Hello’

print(string[7:]) # Output: ‘World!’

You can also use negative indexing and positive indexing together in the
slicing.

Code 2.25 Illustration of negative and positive indexing in Python

string = “Hello, World!”

print(string[0:-1]) # Output: ‘Hello, World’

print(string[-12:5]) # Output: ‘Hello’

42 Python Programming: A Step-by-Step Guide to Learning the Language

2.9.3 Booleans
In Python, a boolean is a data type that represents one of two values: True or
False. Booleans are often used to represent the truth value of an expression
or to represent the state of a toggle. Here are a few examples of boolean
expressions in Python:

Code 2.26 Illustration of Booleans in Python

>>> 2 < 3

True

>>> 2 > 3

False

>>> 3 == 3

True

>>> ‘hello’ == ‘goodbye’

False

>>> True and False

False

>>> True or False

True

You can also use boolean values in control statements such as if and while to
execute code conditionally. For example:

Code 2.26 Illustration of Booleans values in control statements

>>> x = 10

>>> if x > 5:

>>> print(‘x is greater than 5’)

x is greater than 5

2.9.4 Lists
In Python, a list is an ordered collection of objects. You can create a list by
enclosing a comma-separated sequence of objects in square brackets ([]). For
example:

1

3

Python Data Types and Input Output 43

Code 2.27 Illustration of List in Python

>>> a = [1, 2, 3]

>>> print(a)

[1, 2, 3]

You can access the elements of a list using an index. The indices start at 0, so
to access the first element of the list, you would use the index 0:

Code 2.28 Illustration of List with index in Python

>>> a = [1, 2, 3]

>>> print(a[0])

You can also use negative indices, which count backward from the end of the
list. For example, the index -1 refers to the last element of the list:

Code 2.29 Illustration of List with negative index in Python

>>> a = [1, 2, 3]

>>> print(a[-1])

You can also use slicing to access a range of elements in a list. For example:

Code 2.30 Illustration of List with slicing in Python

>>> a = [1, 2, 3, 4, 5]

>>> print(a[1:3])

[2, 3]

This will return a new list with elements at indices 1 and 2 (i.e., 2 and 3).
Slice a[1:3] does not include the element at index 3. If you want to include
the element at index 3, you can use slice a[1:4].

2.9.5 Tuples
In Python, a tuple is an immutable sequence type. Tuples are similar to lists,
but they are created using parentheses instead of square brackets. Because
tuples are immutable, you can’t add or remove elements from them or
sort them in place. However, you can use tuples to create new tuples, by
concatenating or slicing them. Here’s an example of how to create a tuple.

44 Python Programming: A Step-by-Step Guide to Learning the Language

Code 2.30 Illustration of tuple in Python

>>> t = (1, ‘a’, 3.14)
>>> print(t)
(1, ‘a’, 3.14)

You can access the elements of a tuple using indexing, just like with a list:

>>> t[1]

‘a

You can also slice a tuple, to get a new tuple with only a portion of the
original tuple:

>>> t[1:]

(‘a’, 3.14)

Tuples also support all of the common sequence operations, such as
concatenation, repetition, and membership testing.

Code 2.31 Illustration of tuple in Python

>>> t * 3
(1, ‘a’, 3.14, 1, ‘a’, 3.14, 1, ‘a’, 3.14)
>>> 3 in t
False
>>> t + (4, 5, 6)
(1, ‘a’, 3.14, 4, 5, 6)

Because tuples are immutable, you can be sure that the values in the tuple
won’t be changed accidentally.

2.9.6 Sets
In Python, a set is a collection of items that is unordered, changeable, and does
not allow duplicates. Sets are written with curly braces, and the elements are
separated by commas. Here’s an example of how to create a set in Python:

Code 2.32 Illustration of set in Python

Create a set
fruits = {‘apple’, ‘banana’, ‘mango’}
Check the type of the object
print(type(fruits))
Output: <class ‘set’>

Python Data Types and Input Output 45

Sets are useful for storing and working with data when you don’t need to
preserve the order of the items, or when you want to eliminate duplicates. For
example, you might use a set to store a list of unique words in a document
or to store a list of unique user IDs in a database. You can perform various
operations on sets, such as adding and removing items, computing the
intersection and union of sets, and so on. Here are some examples:

Code 2.33 Illustration of set in Python

Add an element to the set

fruits.add(‘orange’)

print(fruits)

Output: {‘apple’, ‘banana’, ‘mango’, ‘orange’}

Remove an element from the set

fruits.remove(‘banana’)

print(fruits)

Output: {‘apple’, ‘mango’, ‘orange’}

Compute the intersection of two sets

set1 = {1, 2, 3, 4}

set2 = {3, 4, 5, 6}

intersection = set1 & set2

print(intersection)

Output: {3, 4}

Compute the union of two sets

set1 = {1, 2, 3, 4}

set2 = {3, 4, 5, 6}

union = set1 | set2

print(union)

Output: {1, 2, 3, 4, 5, 6}

46 Python Programming: A Step-by-Step Guide to Learning the Language

2.7.8 Dictionaries
In Python, a dictionary is a collection of key-value pairs. It is an unordered
data structure that allows you to store and access data efficiently. Here is an
example of how you can create a dictionary in Python:

Code 2.34 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> print(my_dict)

{‘a’: 1, ‘b’: 2, ‘c’: 3}

You can access the values in a dictionary by using the keys:

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> print(my_dict[‘a’])

1
>>> print(my_dict[‘b’])
2
>>> print(my_dict[‘c’])
3

You can also use the get() method to access the values in a dictionary. This
method returns the value for the given key if it exists in the dictionary. If the
key does not exist, it returns a default value:

Code 2.35 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}
>>> print(my_dict.get(‘a’))
1
>>> print(my_dict.get(‘d’))
None
>>> print(my_dict.get(‘d’, ‘key does not exist’))

‘key does not exist’

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> print(my_dict.get(‘a’))

1
>>> print(my_dict.get(‘d’))
None
>>> print(my_dict.get(‘d’, ‘key does not exist’))
‘key does not exist’

Python Data Types and Input Output 47

You can modify the values in a dictionary by using the keys:

Code 2.36 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> my_dict[‘a’] = 10

>>> my_dict[‘b’] = 20

>>> my_dict[‘c’] = 30

>>> print(my_dict)

{‘a’: 10, ‘b’: 20, ‘c’: 30}

You can add new key-value pairs to a dictionary using the same syntax:

Code 2.36 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> my_dict[‘d’] = 4

>>> print(my_dict)

{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4}

You can also use the del statement to remove a key-value pair from a
dictionary:

Code 2.37 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> del my_dict[‘b’]

>>> print(my_dict)

{‘a’: 1, ‘c’: 3}

Finally, you can use the clear() method to remove all key-value pairs from a
dictionary:

Code 2.38 Illustration of dictionary in Python

>>> my_dict = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> my_dict.clear()

>>> print(my_dict)

{}

48 Python Programming: A Step-by-Step Guide to Learning the Language

2.10 Data Type Conversion
Data type conversion, also known as typecasting, is the process of converting
a value from one data type to another. For example, converting an integer
to a string, or a string to a floating-point number. This can be done using
built-in functions or methods in most programming languages, such as int(),
float(), str(), etc. It’s important to be aware of the potential loss of precision
or data that can occur during type conversion, especially when converting
between different numeric tyIn many programming languages, there are
built-in functions or methods that can be used to convert a value from one
data type to another. These functions are typically named after the data type
they convert to, and take the value to be converted as their input.

For example, in Python, the int() function can be used to convert a value to an
integer. If the value is a string, it must contain a number that can be parsed as
an integer. Otherwise, it will raise a ValueError. Similarly, the float() function
can be used to convert a value to a floating-point number and str() function
can be used to convert value to a string.

Here are some examples of data type conversion in Python:

Code 2.39 Illustration of data type conversion in Python

x = “123”

y = int(x) # y is now 123, an integer
z = 3.14
a = int(z) # a is now 3, an integer
b = “3.14”
c = float(b) # c is now 3.14, a floating-point number

It’s important to be aware of the potential loss of precision or data that can
occur during type conversion, especially when converting between different
numeric types. For example, when converting a large integer to a floating-
point number, the decimal places beyond the decimal point may be lost,
resulting in an approximation of the original value.

There are two types of type conversion methods in Python:

• Implicit type conversion
• Explicit type conversion.

Python Data Types and Input Output 49

2.10.1 Implicit Type Conversion in Python
In Python, data type conversion can also be done implicitly, without the use
of built-in functions or methods. Implicit data type conversion, also known as
“type coercion,” occurs when a value of one data type is used in an operation
or expression with a value of a different data type. Python will automatically
convert one of the values to the appropriate data type to allow the operation
to proceed.

Code 2.40 Illustration of Implicit data type conversion in Python

x = 3
y = 2.5
z = x + y # z is now 5.5, a floating-point number
a = “Hello”

b = “world”

c = a + b # c is now “Helloworld”, a string

In the first example, an integer (x) is added to a floating-point number (y)
and the result is a floating-point number. In the second example, two strings
(a and b) are concatenated and the result is a new string. It’s important to be
aware of the potential issues that can arise from implicit data type conversion,
such as loss of precision or unexpected behavior in certain situations. It’s
good practice to explicitly convert data types when necessary, using built-in
functions or methods, to ensure that the desired behavior is achieved.

2.10.2 Explicit Type Conversion in Python
Explicit type conversion, also known as “typecasting,” is the process of
explicitly converting a value from one data type to another using built-in
functions or methods. Python provides several built-in functions to perform
explicit type conversion such as int(), float(), str(), etc.

x = “abc”

y = int(x)

This will raise a ValueError because the string “abc” cannot be parsed as
an integer.

Explicit type conversion is a powerful feature that allows you to control the
data type of a value and make sure that your code is handling data in the way

50 Python Programming: A Step-by-Step Guide to Learning the Language

you expect. It also improves the readability of the code and makes it easier
to understand.

2.11 Input and output
In Python, there are several ways to accept input from the user and to provide
output to the user. Here are some common ways to accept input in Python:

• Using the input() function: This function reads a line of text from the
user. For example:

name = input(“Enter your name: “)

print(“Hello, “ + name)

• Using command line arguments: When you run a Python script from
the command line, you can pass in arguments after the script name. For
example, if you have a script called myscript.py, you can run it with
arguments like this: python myscript.py arg1 arg2. You can access the
command line arguments in your Python script using the sys module.
Here’s an example of how to access the command line arguments in a
script:

import sys
Access the arguments using sys.argv
arg1 = sys.argv[1]
arg2 = sys.argv[2]
print(“Argument 1:”, arg1)
print(“Argument 2:”, arg2)

And here’s an example of how you would run this script from the command
line:

python myscript.py hello world

This would print the following output:

Argument 1: hello

Argument 2: world

There are other ways to accept input in Python, such as using the argparse
module or reading from a file, but these are the most basic methods. To
provide output to the user, you can use the print() function. For example:

Python Data Types and Input Output 51

print(“Hello, world!”)

This would print the string “Hello, world!” to the console.

2.12 Import
In Python, the import statement is used to import modules whose functions
or variables can be used in your current program. For example, to import the
math module, you can use the following code:

import math

This allows you to access the functions and variables defined in the math
module using the dot notation. For example, you can use the sqrt() function
from the math module like this:

Code 2.41 Illustration of import statement in Python

import math

x = math.sqrt(25)

print(x) # Output: 5.0

You can also import specific functions or variables from a module using the
from keyword. For example:

Code 2.42 Illustration of import statement in Python

from math import sqrt

x = sqrt(25)

print(x) # Output: 5.0

2.13 Summary
In this chapter, we covered the fundamentals of the Python language,
including keywords, identifiers, variables, and the rules for using them. We
also discussed Python documentation, single-line and multi-line comments,
and various data types such as numbers, strings, lists, tuples, sets, dictionaries,
and files. We demonstrated how to use interactive input and output functions
in Python and showed how to do formatted input and output. Finally, we
demonstrated how to use the import command to call and use one module
in another.

52 Python Programming: A Step-by-Step Guide to Learning the Language

Review Questions
1. What are the Python keywords and how are they used in a program?
2. What is the difference between a Python identifier and a Python keyword?
3. How does identation affect the structure of a Python program?
4. What are some common Python statements used for flow control and

iteration?
5. How does the input() function work in Python and what is its output data

type?
6. What is the purpose of using documentation in a Python program and

how is it written?
7. How does the import statement work in Python and what are the different

types of imports?
8. What are the different ways to perform output operations in Python?
9. How can we handle errors and exceptions in Python programs and what

are the built-in exception types?
10. What is the difference between a local and global variable in Python and

when should each be used?
11. Which of the following is not a Python data type?

a. list
b. tuple
c. dictionary
d. Matrix

12. What is the data type of ‘Hello, World!’ in Python?
a. int
b. float
c. string
d. boolean

3

Operators and
Expressions

Highlights
l All Python operators

l Precedence and associativity of operators

l Expressions

Python is a versatile and widely-used programming language that offers an
array of operators to assist in carrying out a range of tasks. Its simplicity and
readability make it an ideal choice for coders of all skill levels. Whether you
are a beginner or a seasoned programmer, the utilization of Python operators
can greatly enhance your coding abilities and improve your overall output.
From basic arithmetic operators to logical operators, Python has everything
you need to embark on your coding journey with confidence. With its vast
libraries and frameworks, Python provides a comprehensive set of tools for
developing complex algorithms, applications, and data analysis processes.

3.1 Operator
Operators in Python are special symbols that perform specific operations on
one, two or more operands (values) and produce a result. Operators can be
classified into different categories such as arithmetic, comparison, logical,
bitwise, assignment and identity operators, each with a specific purpose.

54 Python Programming: A Step-by-Step Guide to Learning the Language

• Arithmetic operators

• Comparison (Relational) operators

• Logical operators

• Boolean operators

• Assignment operators

• Bitwise operators

• Membership operators

• Identity operators

3.1.1 Arithmetic Operators
Arithmetic Operators are the basic mathematical operators in Python used to
perform arithmetic operations such as addition, subtraction, multiplication,
division, and others. These operators are represented by symbols such as +, -,
*, /, %, and **. They are used to perform mathematical operations on numbers
and produce a single output value. For example, addition (+) operator is used
to add two values, subtraction (-) operator is used to subtract two values,
and so on. With these operators, you can perform various mathematical
calculations in Python, making it an ideal choice for numerical computing and
data analysis. Additionally, Python provides support for complex numbers,
which can be manipulated using arithmetic operators, making it a powerful
tool for advanced mathematical and scientific calculations.

Table 3.1: Arithmetic Operators

Operator Symbol Description

Addition + Adds two values

Subtraction - Subtracts one value from another

Multiplication * Multiplies two values

Division / Divides	
one	
value	
by	
another	
(returns	
a	
float)

Floor Division // Divides one value by another and rounds down to the
nearest integer

Modulus % Returns the remainder of a division operation

Exponent ** Raises a value to a power

Operators and Expressions 55

Code 3.1 Illustration of arithmetic operators

a = 5
b = 2
print(a + b) # 7
print(a - b) # 3
print(a * b) # 10
print(a / b) # 2.5

print(a // b) # 2

print(a % b) # 1

print(a ** b) # 25

Let’s see another examples:

Code 3.2 Illustration of arithmetic operators

Addition
x = 3 + 4
print(x) # Output: 7

Subtraction
x = 3 - 4
print(x) # Output: -1

Multiplication
x = 3 * 4
print(x) # Output: 12

Division
x = 3 / 4
print(x) # Output: 0.75

Modulus
x = 7 % 3
print(x) # Output: 1

56 Python Programming: A Step-by-Step Guide to Learning the Language

Exponentiation
x = 3 ** 4
print(x) # Output: 81

Floor division
x = 7 // 3
print(x) # Output: 2

It’s also important to note that Python follows the order of operations

(PEMDAS) when evaluating arithmetic expressions.

PEMDAS stands for Parentheses, Exponents, Multiplication and Division,

and Addition and Subtraction. It is the order in which Python (and most other

programming languages and math systems) evaluates arithmetic operations in

an expression.

1. Parentheses: Expressions within parentheses are evaluated first.
2. Exponents: Exponentiation (ie raising to a power) is done next.
3. Multiplication and Division (from left to right): These operations are

done next, from left to right.
4. Addition and Subtraction (from left to right): These operations are done

last, from left to right.

3.1.2 Comparison Operators
Comparison operators are an essential part of any programming language,
and Python is no exception. These operators allow you to compare values
and determine the relationship between them. The result of a comparison is
a Boolean value, either True or False, which can be used to make decisions
in your code. In Python, the following comparison operators are available:
“==” (equal to), “!=” (not equal to), “>” (greater than), “<” (less than), “>=”
(greater than or equal to), and “<=” (less than or equal to). These operators can
be used to compare numbers, strings, and even objects. It’s important to note
that the use of comparison operators is a fundamental aspect of programming
and understanding how to use them correctly is crucial for writing effective
and efficient code.

Table 3.2: comparison operators

Operator Meaning Example Result
== Equal to 3 == 2 False

Operators and Expressions 57

Operator Meaning Example Result
!= Not equal to 3 != 2 True
> Greater than 3 > 2 True
< Less than 3 < 2 False
>= Greater than or equal to 3 >= 2 True
<= Less than or equal to 3 <= 2 False

These operators return a Boolean value (either True or False) depending on
the result of the comparison. Here are some examples of how you can use
these operators:

Code 3.3 Illustration of comparison operators

Equal to
x = 3
y = 4
print(x == y) # Output: False

Not equal to
x = 3
y = 4
print(x != y) # Output: True

Greater than
x = 3
y = 4
print(x > y) # Output: False

Less than
x = 3
y = 4
print(x < y) # Output: True

Greater than or equal to
x = 3
y = 4
print(x >= y) # Output: False

Less than or equal to
x = 3
y = 4
print(x <= y) # Output: True

58 Python Programming: A Step-by-Step Guide to Learning the Language

3.1.3 Assignment Operator
In Python, the assignment operator is the “=” symbol. It is used to assign
a value to a variable. For example, in the statement “x = 5”, the variable
“x” is being assigned the value of 5. In addition to the basic assignment
operator, there are a few other assignment operators that can be used to
perform operations and assign the result to a variable in a single statement.
For example:

Code 3.4 Illustration of assignment operator

x = 10

y = 5

z = x + y

In the above example, the variable x is assigned the value 10, y is assigned
the value 5, and z is assigned the value of x + y, which is 15. Here is a
table that summarizes the various assignment operators in Python, their
corresponding functionality, and examples of their usage with the resulting
value of the variable:

Table 3.3: Assignment operators

Operator Meaning Example Result

= Basic assignment: Assigns a value to a variable x = 5 x = 5

+= Add and assign: which adds the right-hand side
to the variable on the left-hand side and assigns
the result to the variable.

x += 5 x = x + 5

-= Subtract and assign: which subtracts the right-
hand side from the variable on the left-hand side
and assigns the result to the variable.

x -= 5 x = x - 5

*= Multiply and assign: which multiplies the variable
on the left-hand side by the right-hand side and
assigns the result to the variable

x *= 5 x = x * 5

/= Divide and assign: which divides the variable
on the left-hand side by the right-hand side and
assigns the result to the variable.

x /= 5 x = x / 5

//= Floor	
divide	
and	
assign:	
which	
performs	
floor	

division on the variable on the left-hand side by
the right-hand side and assigns the result to the
variable.

x //= 5 x = x // 5

Operators and Expressions 59

Operator Meaning Example Result

%= Modulus and assign: which calculates the
remainder of the variable on the left-hand side
when divided by the right-hand side and assigns
the result to the variable.

x %= 5 x = x % 5

**= Exponent and assign: which raises the variable
on the left-hand side to the power of the right-
hand side and assigns the result to the variable.

x **= 5 x = x ** 5

&= Bitwise and assign: which performs bitwise and
operation on the variable on the left-hand side
by the right-hand side and assigns the result to
the variable.

x &= 5 x = x & 5

^= Bitwise xor assign: which performs bitwise xor
operation on the variable on the left-hand side
by the right-hand side and assigns the result to
the variable?

x ^= 5 x = x ^ 5

>>= Bitwise right shift assign: which performs bitwise
right shift operation on the variable on the left-
hand side by the right-hand side and assigns the
result to the variable

x >>= 5 x = x >> 5

<<= Bitwise left shift assign: which performs bitwise
left shift operation on the variable on the left-
hand side by the right-hand side and assigns the
result to the variable.

x <<= 5 x = x << 5

It is important to note that the right-hand side of the operator must be a valid
expression that can be evaluated to a value. Also, the above table is meant to
give you an idea of the operations being performed and the resulting values,
but in practice, you would need to assign the values to the variable and then
perform the operations.

3.1.4 Logical Operators
In Python, the logical operators are and, or, and not. These operators allow
you to create boolean expressions, which evaluate to either True or False. The
most common logical operators are given as follow:

and: returns True if both the expressions are true, otherwise False

or : returns True if at least one of the expressions is true, otherwise False.

not : returns True if the expression is false, otherwise False.

Here is an example of each operator:

60 Python Programming: A Step-by-Step Guide to Learning the Language

Code 3.5 Illustration of and, or and not assignment operator

and operator
if (x > 0) and (x < 10):

print(“x is a positive single-digit number.”)
or operator
if (x < 0) or (x > 10):

print(“x is a negative number or a number greater than 10.”)
not operator

if not (x == y):

print(“x is not equal to y.”)

The and operator returns True if both the expressions on either side of it are

True, and False otherwise.

The or operator returns True if either of the expressions on either side of it

are True, and False otherwise.

The not operator negates the boolean value of the expression that follows it.

So, if the expression is True, not will make it False, and if the expression is

False, not operator will make it True.

Lets understand with an example that shows the results of different logical

operations using the and, or, and not operators in Python in the table.

Table 3.4: logical operators

Expression Result

True and True True

True and False False

False and False False

True or True True

True or False True

False or False False

not True False

not False True

You can also combine multiple logical operations in an expression, for
example: We have two variables x and y as shown in table number.

Operators and Expressions 61

Code 3.6 Illustration of logical operators

x = 5

y = 3

print((x > 2 and y > 3) or (x < 10 and y < 10))

prints True

(False or True) = True

Note that the and, or, and not keywords are used to perform logical operations
in Python, as opposed to the symbols &, |, and ! commonly used in other
programming languages.

3.1.5 Bitwise Operators
In Python, the bitwise operators are &, |, ^, ~, <<, and >>. These operators
allow you to manipulate individual bits in an integer value. Let’see in table
below the common bitwise operators in Python with an example of how they
are used :

Table 3.5 bitwise operators

Operator Name Example Result

& AND 5 & 3 1

| OR 5 | 3 7

^ XOR 5 ^ 3 6

~ NOT ~5 -6

<< Left shift 5 << 2 20

>> Right shift 5 >> 2 1

Here in above example,

5 in binary is 101 and 3 in binary is 011,hence result calculated as follow:

• 5 & 3 = 001 which is 1
• 5 | 3 = 111 which is 7
• 5 ^ 3 = 110 which is 6
• ~5 = -6 in decimal
• 5 << 2 = 10100 which is 20 in decimal
• 5 >> 2 = 001 which is 1 in decimal

62 Python Programming: A Step-by-Step Guide to Learning the Language

Keep in mind that these operators only work on integers and the result is also

an integer.

Here another example of each operator:

Code 3.7 Illustration of bitwise operators

& operator (bitwise AND)
x = 0b10101010 # 170
y = 0b01010101 # 85
z = x & y # 0b00000000 = 0

| operator (bitwise OR)
x = 0b10101010 # 170
y = 0b01010101 # 85
z = x | y # 0b11111111 = 255

^ operator (bitwise XOR)
x = 0b10101010 # 170
y = 0b01010101 # 85
z = x ^ y # 0b11111111 = 255

~ operator (bitwise NOT)
x = 0b10101010 # 170
y = ~x # -171

<< operator (left shift)
x = 0b10101010 # 170
y = x << 1 # 0b101010100 = 340

>> operator (right shift)
x = 0b10101010 # 170
y = x >> 1 # 0b01010101 = 85

The & operator performs a bitwise AND operation on two integers. It compares
each bit of the first integer to the corresponding bit of the second integer,
and if both bits are 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

Operators and Expressions 63

The | operator performs a bitwise OR operation on two integers. It compares
each bit of the first integer to the corresponding bit of the second integer,
and if either bit is 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

The ^ operator performs a bitwise XOR operation on two integers. It compares
each bit of the first integer to the corresponding bit of the second integer, and
if the bits are different, the corresponding result bit is set to 1. Otherwise, the

corresponding result bit is set to 0.

The ~ operator is a bitwise NOT operator. It inverts all the bits of the integer

that follows it, changing all the 0s to 1s and all the 1s to 0s.

The << operator shifts the bits of an integer value to the left by the number of

places specified by the second operand. For example, if x is an integer value
with n bits, and y is an integer value with m places, x << y is equivalent to
x * 2**y.

The >> operator shifts the bits of an integer value to the right by the number
of places specified by the second operand. For example, if x is an integer
value with n bits, and y is an integer value with m places, x >> y is equivalent
to x // 2**y.

3.1.6 Special Operators
Python language offers some special types of operators like the identity
operator and the membership operator. These are described below under

3.1.6.1 Identity Operators
In Python, the identity operators are used to determining whether two objects
are the same object. There are two identity operators:

• is: returns True if the objects are the same object, False otherwise

• is not: returns True if the objects are not the same object, False otherwise

Here’s an example of how to use the identity operators:

Code 3.8 Illustration of special operators

x = [1, 2, 3]

y = [1, 2, 3]

z = x

64 Python Programming: A Step-by-Step Guide to Learning the Language

x and y are different objects

print(x is y) # Output: False

x and z are the same object

print(x is z) # Output: True

x and y are not the same object

print(x is not y) # Output: True

x and z are the same object

print(x is not z) # Output: False

It’s important to note that the identity operators check for object identity, not
object equality. In other words, they check if two objects are the same object
in memory, not if they have the same content. For example

Code 3.9 Illustration of identity operators

x = [1, 2, 3]
y = [1, 2, 3]

x and y have the same content
print(x == y) # Output: True

x and y are different objects
print(x is y) # Output: False

check if two objects have the same content, you should use the equality
operator (==).

3.1.6.2 Membership Operators
In Python, the membership operators are in and not in. These operators are
used to test whether a value is found within a sequence (such as a string,
tuple, or list) or not. The operator in returns True if the value is found in the
sequence and False if it is not. The operator not in returns True if the value
is not found in the sequence and False if it is.

Here is an example of how to use the membership operators:

Operators and Expressions 65

Code 3.10 Illustration of membership operators

>>> # Test if ‘a’ is in the string ‘abc’

>>> ‘a’ in ‘abc’

True

>>> # Test if ‘d’ is not in the string ‘abc’

>>> ‘d’ not in ‘abc’

True

>>> # Test if 1 is in the list [1, 2, 3]

>>> 1 in [1, 2, 3]

True

>>> # Test if 4 is not in the list [1, 2, 3]

>>> 4 not in [1, 2, 3]

True

You can also use the membership operators with variables:

Code 3.11 Illustration of membership operators

>>> # Assign a string to a variable
>>> s = ‘abc’
>>> # Test if ‘a’ is in the string
>>> ‘a’ in s
True
>>> # Assign a list to a variable
>>> l = [1, 2, 3]
>>> # Test if 2 is in the list
>>> 2 in l
True

3.2 Expressions
Expressions are statements that can be evaluated to a value. In Python, an
expression is a combination of values, variables, and operators that can be
evaluated to a single value. For example, the expression 2 + 3 is a numerical
expression that evaluates to the value 5. The expression “Hello, “ + “World!”
is a string expression that evaluates to the value “Hello, World!”.

66 Python Programming: A Step-by-Step Guide to Learning the Language

Expressions can be simple or complex and can include variables, functions,
and other elements. Here are some examples of Python expressions:

• 2 + 3
• “Hello, “ + “World!”
• len(“Hello, World!”)
• 2 * 3 + 5
• “Hello, “ * 3

In Python, expressions can be used in a variety of contexts, such as in
assignments, function calls, and as part of control structures like loops and
conditional statements.

3.2.1 Python Operator Precedence
In Python, operator precedence determines the order in which operations
are performed. Operators with higher precedence are performed before
operators with lower precedence. For example, in the expression 4 + 5 *
2, the multiplication operation (*) has higher precedence than the addition
operation (+), so the multiplication is done first and the result is added to 4.
The expression is evaluated as 4 + (5 * 2), which is equal to 14.

Here is a list of the operators in Python, listed in order of decreasing

precedence:

1. () Parentheses
2. ** Exponentiation (raise to the power)
3. ~ + - Unary plus and minus (method names for the + and - operators)
4. * / % // Multiply, divide, modulo and floor division
5. + - Addition and subtraction
6. >> << Right and left bitwise shift
7. & Bitwise ‘AND’
8. ^ | Bitwise exclusive OR and regular OR
9. <= < > >= Comparison operators

10. == != Equality operators
11. = %= /= //= -= += *= **= Assignment operators
12. is is not Identity operators
13. in not in Membership operators
14. not or and Boolean NOT, OR, and AND

Operators and Expressions 67

You can use parentheses to override the precedence and specify the order in
which the operations should be performed. For example, in the expression
(4 + 5) * 2, the parentheses indicate that the addition should be performed
before the multiplication, so the expression is evaluated as (4 + 5) * 2, which
is equal to 14.

3.2.2 Associativity
In Python, the associativity of an operator determines the order in which
operations with the same precedence are performed. Most operators in Python
are left-associative, which means that operations are performed from left to
right.

For example, in the expression 2 + 3 - 4, the addition (+) and subtraction (-)
operators have the same precedence, so they are performed from left to right.
The expression is evaluated as (2 + 3) - 4, which is equal to 1.

However, some operators are right-associative. This means that operations are
performed from right to left. The exponentiation operator (**) is an example
of a right-associative operator in Python.

For example, in the expression 2 ** 3 ** 4, the exponentiation operator (**)
has the same precedence, so it is performed from right to left. The expression
is evaluated as 2 ** (3 ** 4), which is equal to 2 ** 81, or 43046721.

Here is a list of the operators in Python, along with their associativity:

Left-associative:

• + - Addition and subtraction

• * / % // Multiply, divide, modulo and floor division

• >> << Right and left bitwise shift

• & Bitwise ‘AND’

• ^ | Bitwise exclusive OR and regular OR

• <= < > >= Comparison operators

• == != Equality operators

• = %= /= //= -= += *= **= Assignment operators

• is is not Identity operators

• in not in Membership operators

• not or and Boolean NOT, OR, and AND

68 Python Programming: A Step-by-Step Guide to Learning the Language

Right-associative:

• ** Exponentiation (raise to the power)

3.2.3 Non-Associative Operators
In mathematics, a non-associative operator is an operator that does not satisfy

the associative property. The associative property states that for any three

values, the order in which the operator is applied to them does not matter.

In other words, if we have the values a, b, and c, and an operator *, the

following expression should always be true:

(a * b) * c = a * (b * c)

If this property does not hold, then the operator is non-associative.

Here are some examples of non-associative operators:

The division operator (/). For example, (3 / 4) / 5 is not equal to 3 / (4 / 5).

The subtraction operator (-). For example, (5 - 3) - 2 is not equal to 5 -

(3 - 2).

It’s important to note that non-associative operators can still be used to

perform calculations, but you need to be careful about the order in which

you apply them. The order in which you apply non-associative operators can

change the result of the calculation.

3.3 Summary
In this chapter, we have learned about different operators such as arithmetic,
comparison, logical, bitwise, special operators, identity, and membership
operators available in the Python language. All the operators are described
with appropriate examples of each. We have learned how operators and
operands form an expression, which is the basic sentence of a programming
language. The precedence decides which operator will be evaluated first
and associativity decides how to evaluate an expression if two operators
exhibit the same precedence. Finally, we have learned how Python language
evaluates expressions.

Review Questions
1. What are the different types of operators available in Python?
2. Can you explain the precedence of operators in Python?
3. What is the associativity of the Python operators?

Operators and Expressions 69

4. How do you use arithmetic operators in Python expressions?
5. Can you give an example of a Python expression that uses a comparison

operator?
6. What are the logical operators in Python and how are they used in

expressions?
7. How do you use the assignment operator in Python expressions?
8. Can you explain the use of the ternary operator in Python?
9. What is the difference between a Python expression and a statement?

10. Can you provide an example of a Python expression that uses multiple
operators and nested expressions?

11. Which of the following is not a type of operator available in Python?
(a) Arithmetic operators
(b) Comparison operators
(c) Logical operators
(d) Email operators

12. What is the purpose of using the precedence of operators in Python?
(a) To determine the order of evaluation in an expression
(b) To determine the type of the operand in an expression
(c) To determine the associativity of the operator
(d) To determine the value of the expression

https://taylorandfrancis.com

 	 	 	 	 	

 	 	 	 	 	 	

4

Control Structures

Highlights
l Python if, if else, if-elif-if statements

l Python
while,
 for,
 infinite
 loop

l Python
break,
continue
and
pass
statements

Control structures are blocks of code that allow a programmer to specify
the flow of execution in a program. In Python, there are three main types of
control structures: if statements, for loops, and while loops.

If statements allow the programmer to specify a condition, and if the condition

is met, a block of code will be executed. If statements can also include

optional “else” clauses, which will execute if the condition is not met.

For loops allow the programmer to iterate over a sequence of elements, such

as a list or a string. The programmer can specify the variable to be used for

each element in the sequence, and a block of code to be executed for each

element.

While loops allow the programmer to specify a condition, and as long as the

condition is met, a block of code will be executed. Care must be taken while

loops, as it is easy to create an infinite loop if the condition is always met.

Control structures are an essential part of programming, as they allow the

programmer to specify the order in which code is executed and to repeat

certain actions.

	 	 	 	 	 	 	 	 	

	

	 	

72 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

4.1 Decision Making Statements
In Python, decision-making is achieved through the use of control statements.
Control statements are blocks of code that allow you to specify the flow of
your program.

There are two types of control statements in Python:

• Conditional statements: These statements allow you to specify different
actions to be taken based on whether a condition is true or false. In
Python, the most common conditional statement is the if statement.

• Loop statements: These statements allow you to execute a block of code
multiple times. In Python, the most common loop statements are for and
while loops.

The conditional statements available in Python are as following:

• if Statement
• if-else Statement
• if-elif-else Statement
• Nested if Statement

4.1.1 Python if Statement
The if statement is a control structure that allows
you to specify a block of code to be executed if
a certain condition is true. Here is the syntax of
an if statement in Python:

if condition:

code block

Here is a flowchart that illustrates how the if
statement works:

Here is an example of an if statement in Python
that checks if a number is positive:

Code 4.1 A Python program to check
whether the given number is positive.

num = 5

if num > 0:

print(“The number is positive”)

Test
Expression

False

True

Body of if

Statement
just below if

Fig. 4.1: Flow chart
representing
if
statement

Control Structures 73

The code block inside the if statement will only be executed if the condition
num > 0 is true. In this case, the condition is true, so the code block will be
executed and the message “The number is positive” will be printed to the
console.

Another example of using an “if” statement to print multiple statements in
Python:

Code 4.2 A Program to print multiple statements when a given condition
is true.

x = 5

if x > 0:

print(“x is positive”)

print(“x is greater than 0”)

print(“x is a positive number”)

In this example, the “if” statement is used to check if the variable x is greater
than 0. If it is, the code inside the “if” block will be executed and all the three
print statements will be executed, resulting in the following output:

x is positive

x is greater than 0

x is a positive number

4.1.2 Python if-else Statement
An if-else statement in Python is a control flow statement that allows you to
execute different blocks of code depending on whether a condition is true or
false.

The basic syntax of an if-else statement is as follows:

if condition:

code block to execute if condition is true

else:

code block to execute if condition is false

Here’s a flowchart that illustrates the execution of an if-else statement:

	 	 	 	 	 	 	 	 	

	 	 	 	 	

74 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

condition

statement (s)

true

false

rest of code

Fig. 4.2: Flow
chart
representing
if-else
statement

Here’s an example of an if-else statement in Python that checks if a number
is positive or negative:

Code 4.3 A Python program to check whether the given number is
positive or negative.

number = 10

if number > 0:

print(“Positive”)

else:

print(“Negative”)

The output of this code would be “Positive”. here’s another example of using
an “if-else” statement in Python where the input is taken from the user:

Code 4.4 A Program to check whether you are eligible to cast a vote or
not.

age = int(input(“Enter your age: “))

if age >= 18:

print(“You are eligible to vote.”)

else:

print(“You are not eligible to vote.”)

Control Structures 75

In this program, the input function is used to take the age of the user as an
integer and store it in the variable “age”. Then, the “if-else” statement is used
to check if the variable “age” is greater than or equal to 18. If it is, the code
inside the “if” block will be executed and the message “You are eligible to
vote.” will be printed. If the condition is not met, the code inside the “else”
block will be executed and the message “You are not eligible to vote.” will
be printed.

4.1.3 Python if-elif-else
An if-elif-else statement is a control flow statement that allows a program
to execute a specific block of code among multiple choices. It consists of a
boolean expression for each if, Elif, and else clause, and a block of code to
be executed if the boolean expression evaluates to True.

Here is the syntax for an if-elif-else statement:

if boolean_expression_1:

code block to be executed if boolean_expression_1 is True

elif boolean_expression_2:

code block to be executed if boolean_expression_2 is True

else:

code block to be executed if all boolean expressions are False

Here is a flow chart for an if-elif-else statement:

if boolean_expression_1:

execute code block 1

else:

if boolean_expression_2:

execute code block 2

else:

execute code block 3

Here is an example program that demonstrates the use of an if-elif-else
statement:

Code 4.5 A Program to check wether a given number is positive or
negative using if-elif-else.

	 	 	 	 	 	 	 	 	

76 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

x = 10

if x < 0:

print(“x is a negative number”)

elif x == 0:

print(“x is zero”)

else:

print(“x is a positive number”)

Output:

x is a positive number

In this example, the variable x is first given the value of 10. The program
then checks if the value of x is less than 0. Since it is not, the program moves
on to the next elif statement and checks if x is equal to 0. Since it is not, the
program moves on to the final else statement and executes the code within it,
which is to print “x is positive”.

The if elif else statement allows you to check multiple conditions and execute
different code for each one. The if statement checks the first condition, if the
condition is true, it will execute the corresponding block of code and exit the
statement. If the condition is false, the program will move on to the next elif
statement and check the next condition. If none of the conditions are true, the
code in the else block will be executed.

Code 4.6 A Program to demonstrate the use of multiple if elif conditions.

grade = “B”
if grade == “A”:

print(“Excellent work!”)
elif grade == “B”:

print(“Good job!”)
elif grade == “C”:

print(“Average performance.”)
elif grade == “D”:

print(“Needs improvement.”)
else:

print(“Invalid grade.”)

Control Structures 77

In this example, the variable grade is assigned the value “B”. The program
then checks each elif statement in order, starting with the first one. When
it finds the first condition that is true (grade == “B”), it will execute the
corresponding block of code (printing “Good job!”) and exit the statement. If
none of the conditions are true, it will execute the code in the else statement,
printing “Invalid grade.”

You can see from the example, the if elif else statement is useful when you
have multiple conditions that you want to check and different actions to take
depending on the outcome of those checks.

4.1.4 Python Nested if Statements
Nested if statements allow you to include one or more if statements inside of
another if statement. The syntax for a nested if statement is as follows:

Test
Expression

Body of if
Body of
nested if

Body of
nested else

Statement just
below if

Need test
expression

False

False
True True

Here is an example of a nested if statement in Python:

Code 4.7 A program to demonstrate the use of nested if statement.

x = 10

y = 5

if x > y:

print(“x is greater than y”)

if x > 10:

print(“x is also greater than 10”)

	 	 	 	 	 	 	 	 	

78 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

else:

print(“x is not greater than 10”)

else:

print(“x is not greater than y”)

The output of this code would be:

x is greater than y

x is not greater than 10

In the above example, the outer if statement checks if the variable x is greater
than 0. If it is, the inner if statement checks if the variable y is greater than 0.
If both conditions are true, the program will print “Both x and y are greater
than 0”. If the x is greater than 0 but y is not greater than 0, the program will
print “x is greater than 0, but y is not greater than 0”. If x is not greater than
0, the program will print “x is not greater than 0”.

In the nested if statement, we can also use elif instead of else: if. Let’s
understand with the help of another example given in the program below.

Code 4.8 A program to check whether the given numbers are greater or
less than zero.

x = 5
y = 10

if x > 0:
if y > 0:

print(“Both x and y are greater than 0”)
elif y<0:

print(“x is greater than 0, but y is less than 0”)

else:

print(“x is not greater than 0”)

4.2 Python Loops
In Python, a loop is a control structure that allows you to repeat a block of
code a certain number of times or until a certain condition is met.

Control Structures 79

4.2.1 Types of Loops
• while loop
• Infinite loop
• for loop
• Nested loop

4.2.2 Python While Loop
A while loop in Python is used to execute a block of code repeatedly as long
as a certain condition is True. The syntax for a while loop is as follows:

while condition:

code to be executed

The code inside the while loop will be executed repeatedly until the condition
becomes False. It is important to make sure that the condition eventually
becomes False, or the loop will run indefinitely, which is known as an infinite
loop. Here is an example of a while loop in Python:

Code 4.9 A Program to print numbers from 0 to 9.

i = 0

while i < 10:

print(i)

i += 1

This while loop will print the numbers 0 through 9.

It is also possible to use a break statement inside a while loop to exit the loop

early, or a continue statement to skip the remainder of the current iteration

and move on to the next one.

i = 0

while True:

if i == 5:

break

print(i)

i += 1

This while loop will run indefinitely, but the break statement will cause it to
exit when i becomes 5. The output will be the numbers 0 through 4.

	 	 	 	 	 	 	 	 	

80 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

i = 0

while True:

i += 1

if i % 2 == 0:

continue

print(i)

if i == 10:

break

This while loop will also run indefinitely, but the continue statement will
cause it to skip the remainder of the current iteration when i is even, and the
break statement will cause it to exit when i becomes 10. The output will be
the odd numbers 1 through 9.

Here’s another program that demonstrates the use of while loop in Python:

Code 4.10 Program to calculate the sum of numbers entered by the user.

Initialize variables
sum = 0
number = 1
Ask the user to enter numbers
while number != 0:

number = int(input(“Enter a number (0 to quit): “))
sum = sum + number

Print the result

print(“The sum of the numbers is”, sum)

Output:

Enter a number (0 to quit): 5

Enter a number (0 to quit): 10

Enter a number (0 to quit): 15

Enter a number (0 to quit): 0

The sum of the numbers is 30

   

Control Structures 81

In the above program, the while loop continues to execute as long as the
value of the number is not equal to 0. The user is asked to enter a number,
and the input is converted to an integer using int(). The entered number is
then added to the sum of all previous numbers. When the user enters 0, the
loop terminates, and the final result is printed.

4.2.3  The
 Infinite
Loop

An infinite loop is a loop that runs indefinitely because the loop’s condition
is always True. This can occur if the condition is not updated inside the loop,
or if the condition cannot be met. Here is an example of an infinite loop in
Python:

while True:

print(“Hello, World!”)

This loop will print “Hello, World!” indefinitely because the condition True
is always True.This loop will keep printing the message “Hello, World!” until
the program is interrupted. To interrupt the program, you can use CTRL + C
in the terminal or CTRL + Break in the IDLE editor.

It is important to be careful when using while loops, as infinite loops can
cause your program to crash or become unresponsive. To avoid infinite loops,
make sure that the condition of the loop can eventually become False, or use
a break statement to exit the loop when a certain condition is met.

i = 0

while True:

print(i)

i += 1

if i == 10:

break

In this example, the break statement causes the loop to exit when i becomes
10, preventing the loop from running indefinitely. The output will be the
numbers 0 through 9.

4.2.4 Using else with while Loop
In Python, the else clause of a while loop can be used to specify a block of
code that should be executed after the loop has finished executing, but only if

	 	 	 	 	 	 	 	 	

82 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

the loop completed normally (i.e., if the loop was not exited prematurely by
a break statement). Here is an example of using an else clause with a while
loop in Python:

Code 4.11 A Program to demonstrate the use of else clause with a while
loop.

i = 0

while i < 10:

print(i)

i += 1

else:

print(“Done!”)

In this example, the while loop will print the numbers 0 through 9, and then
the else clause will be executed, printing “Done!”. If the while loop is exited
prematurely by a break statement, the else clause will not be executed. For
example

i = 0

while True:

print(i)

i += 1

if i == 5:

break

else:

print(“Done!”)

In this example, the while loop will print the numbers 0 through 4, and then

exit when i becomes 5. The else clause will not be executed.

The else clause of a while loop can be useful for executing clean-up code or

for handling cases where the loop did not execute at all (e.g., if the loop’s

condition was False from the start).

4.2.5 Python for Loop
A for loop in Python is used to iterate over a sequence or an iterable object,
such as a list, tuple, or string. The syntax for a for loop is as follows:

Control Structures 83

for item in iterable:

code to be executed

The for loop will iterate over the items in the iterable, and for each item,
it will assign the value to the item variable and execute the code inside the
loop. Here is an example of a for loop in Python that iterates over a list of
numbers:

Code 4.12 A Program to demonstrate for loop in Python that iterates
over a list of numbers.

for i in [1, 2, 3, 4, 5]:

print(i)

This for loop will print the numbers 1 through 5. It is also possible to use a
break statement inside a for loop to exit the loop early, or a continue statement
to skip the remainder of the current iteration and move on to the next one.

for i in [1, 2, 3, 4, 5]:
if i == 3:

break
print(i)

This for loop will print the numbers 1 and 2, and then exit when it encounters
the number 3.

for i in [1, 2, 3, 4, 5]:

if i % 2 == 0:

continue

print(i)

This for loop will print the odd numbers 1, 3, and 5, because the continue
statement causes the loop to skip the remainder of the current iteration when
i is even.

Code 4.13 A Program to print sum of all the numbers given in a list.

numbers = [1, 2, 3, 4, 5]
sum = 0
for num in numbers:

sum += num
print(“Sum of all numbers:”, sum)

	 	 	 	 	 	 	 	 	

84 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

4.2.6 The range() Function
The range() function in Python is a built-in function that returns a sequence
of numbers, starting from 0 by default, increments by 1 (also by default), and
ends at a specified number. The syntax for the range() function is as follows:

range(stop)

range(start, stop[, step])

The stop parameter is required and specifies the end of the sequence. The
start parameter is optional and specifies the starting number of the sequence.
The step parameter is also optional and specifies the increment between
each number in the sequence. Here are some examples of using the range()
function:

Code 4.14 Illustration of range() function

Print the numbers 0 through 9

for i in range(10):

print(i)

Print the numbers 2 through 9

for i in range(2, 10):

print(i)

Print the even numbers 0 through 8

for i in range(0, 10, 2):

print(i)

Print the odd numbers 1 through 9

for i in range(1, 10, 2):

print(i)

The range() function is often used with a for loop to repeat a block of code
a specific number of times. For example:

for i in range(5):

print(“Hello, World!”)

This code will print “Hello, World!” 5 times.

Control Structures 85

Note that the range() function returns a sequence of numbers, but does not
actually create a list. To create a list from a range(), you can use the list()
function.

numbers = list(range(10))

print(numbers) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

4.2.7 For Loop with else
In Python, the else clause of a for loop can be used to specify a block of
code that should be executed after the loop has finished executing, but only
if the loop completed normally (i.e., if the loop was not exited prematurely
by a break statement). Here is an example of using an else clause with a for
loop in Python:

for i in [1, 2, 3, 4, 5]:

print(i)

else:

print(“Done!”)

In this example, the for loop will print the numbers 1 through 5, and then
the else clause will be executed, printing “Done!”. If the for loop is exited
prematurely by a break statement, the else clause will not be executed. For
example:

Code 4.15 break statement

for i in [1, 2, 3, 4, 5]:

if i == 3:

break

print(i)

else:

print(“Done!”)

In this example, the for loop will print the numbers 1 and 2, and then exit
when it encounters the number 3. The else clause will not be executed.

The else clause of a for loop can be useful for executing clean-up code or
for handling cases where the loop did not execute at all (e.g., if the iterable
object is empty).

	 	 	 	 	 	 	 	 	

86 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

4.2.8 Nested Loops
It is possible to have loops inside of other loops in Python, known as nested
loops. The inner loop will be executed completely for each iteration of the
outer loop. Here is an example of a nested loop in Python:

Code 4.16 Illustration of nested loop

for i in range(1, 4):

for j in range(1, 4):

print(i, j)

This code will print the following:

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

The inner loop (the for loop with the variable j) will be executed completely
for each iteration of the outer loop (the for loop with the variable i).

It is also possible to use a break statement inside a nested loop to exit both the
inner loop and the outer loop, or a continue statement to skip the remainder
of the current iteration of the inner loop and move on to the next one

for i in range(1, 4):

for j in range(1, 4):

if j == 2:

break

print(i, j)

Control Structures 87

This code will print the following:

1 1

2 1

3 1

The inner loop will exit when j becomes 2, causing the outer loop to move
on to the next iteration.

for i in range(1, 4):

for j in range(1, 4):

if j == 2:

continue

print(i, j)

This code will print the following:

1 1

1 3

2 1

2 3

3 1

3 3

The inner loop will skip the remainder of the current iteration when j becomes
2, but the outer loop will continue running.

4.3 Python Control Statements
In python to control the flow of the program basically used control statements
are:

• break Statement
• continue Statement
• pass Statement

4.3.1 Python Break Statement
The break statement in Python is used to exit a loop early before the loop’s
condition becomes False. When a break statement is encountered inside a

	 	 	 	 	 	 	 	 	

88 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

loop, the loop is immediately terminated, and the program execution moves
to the next statement after the loop. Here is an example of using a break
statement in a for loop in Python:

Code 4.17 break statement in python

for i in range(10):

if i == 5:

break

print(i)

This for loop will print the numbers 0 through 4, and then exit when i
becomes 5. The output will be:

0

1

2

3

4

It is also possible to use a break statement inside a while loop:

i = 0

while True:

print(i)

i += 1

if i == 5:

break

This while loop will print the numbers 0 through 4, and then exit when i
becomes 5. The output will be:

0

1

2

3

4

Control Structures 89

4.3.2 Python Continue Statement
In Python, the continue statement is used to skip the current iteration of a
loop and move on to the next iteration. It is used to interrupt the normal flow
of a loop and return control to the beginning of the loop, allowing the next
iteration to begin.

Here is an example of how to use the continue statement in a for loop:

Code 4.18 Illustration of continue statement

for i in range(10):

if i % 2 == 0:

continue

print(i)

The output of this code will be:

1

3

5

7

9

The continue statement is encountered when it is even, causing the current
iteration to be skipped and control to be returned to the beginning of the loop.
As a result, only the odd numbers from 1 to 9 are printed.

The continue statement can also be used in a while loop. In this case, it would
cause the loop to skip the rest of the current iteration and move on to the next
iteration, just as it does in a for loop.

i = 0

while i < 10:

i += 1

if i % 2 == 0:

continue

print(i)

This code will have the same output as the for loop example above.

	 	 	 	 	 	 	 	 	

90 Python
Programming:
A
Step-by-Step
Guide
to
Learning
the
Language

4.3.3 Python Pass Statement
In Python, the pass statement is a null operation - it does nothing. It is used
as a placeholder in code blocks where some action is required, but no action
is necessary. For example, you might use the pass statement in an if statement
when you have not yet decided what action to take:

if some_condition:

pass

The pass statement can also be used in a for or while loop when you have not
yet decided what to do in the loop body:

Code 4.19 Illustration of pass statement

for i in range(10):

pass

i = 0

while i < 10:

i += 1

pass

In both of these examples, the loop will iterate the specified number of times,

but no action will be taken in the loop body.

The pass statement is often used as a placeholder while writing code,

allowing you to get the basic structure of a program in place before adding
more detailed code. It is also used in code blocks where the syntax requires
a statement, but no action is needed.

4.4 Summary
In this chapter, we learned about the control structures available in Python.
These include decision-making statements such as “if,” “if else,” and “elif,”
as well as looping constructs like “while” and “for.” We also covered
features like “while loop with else” and “for loop with else,” as well as
the “range()” function. Additionally, we discussed control statements like
“break,” “continue,” and “pass,” and provided flow diagrams for each control
structure.

Control Structures 91

Review Questions
1. What are control structures in Python and why are they used?
2. Can you explain the syntax and use of the Python if statement?
3. How does the if-else statement work in Python?
4. Can you provide an example of an if-elif-else statement in Python?
5. How does the while loop work in Python?
6. What is the for loop in Python and how is it used?
7. Can you give an example of an infinite loop in Python?
8. What is the purpose of the break statement in Python?
9. Can you explain the continue statement in Python and when to use it?

10. What is the function of the pass statement in Python control structures?
11. Which of the following statements is true about control structures in

Python?
(a) They are used to control the flow of program execution
(b) They are used to define the structure of the program
(c) They are used to declare variables and functions
(d) They are used to print output to the console

12. What is the syntax of the Python if statement?
(a) if condition { statements }
(b) if { condition } (statements)
(c) if (condition) { statements }
(d) if condition : statements

https://taylorandfrancis.com

5

Python Native
Data Types

Highlights
l Python native data types

l Number

l List, Tuple, Set, Dictionary

l Strings

In Python, there are several built-in data types that can be used to store
and manipulate data. These native data types include

1. Numbers: Python has two main number types, integers, and floating-
point numbers. Integers are whole numbers, while floating-point
numbers are numbers with decimal points.

2. Strings: Strings are sequences of characters, and they can be defined
using single or double quotes.

3. Lists: Lists are ordered sequences of objects, and they are defined
using square brackets. Lists are mutable, meaning that their elements
can be changed.

4. Tuples: Tuples are similar to lists, but they are immutable, meaning
that their elements cannot be modified once created. Tuples are
defined using parentheses.

5. Dictionaries: Dictionaries are unordered collections of key-value
pairs, and they are defined using curly braces.

94 Python Programming: A Step-by-Step Guide to Learning the Language

6. Sets: Sets are unordered collections of unique elements, and they are
defined using curly braces.

7. Booleans: Booleans are used to represent the values True and False.
In addition to these native data types, Python also has several additional data
types available in its standard library, such as arrays and collections.

5.1 Numbers
In Python, there are several types of numbers that you can use in your code.
These include:

1. int (short for “integer”): These are whole numbers, such as 1, 2, 3, 4,
etc. They can be positive, negative, or zero.

2. float (short for “floating point”): These are numbers with a decimal
point, such as 3.14, 2.71828, etc. They can also be positive, negative, or
zero.

3. complex: These are complex numbers, which are numbers with both a
real and imaginary component. The real component is a float and the
imaginary component is a float multiplied by the imaginary unit j. For
example, the complex number 3 + 2j has a real component of 3 and an
imaginary component of 2.

In addition to these basic number types, Python also has a few additional types
that are used for representing numbers in specific contexts. For example, the
decimal module provides support for arbitrary-precision decimal arithmetic,
and the fractions module provides support for rational number arithmetic.

You can perform various operations on numbers in Python, such as addition,
subtraction, multiplication, division, etc. For example

x = 3 # x is an int

y = 2.5 # y is a float

z = x + y # z is a float

You can also use the built-in abs() function to get the absolute value of a
number, the pow() function to raise a number to a power, and the round()
function to round a number to a specified number of decimal places.

5.1.1 Number Type Conversion
In Python, you can convert one number type to another using the built-in
functions int(), float(), and complex(). For example, you can convert an int

Python Native Data Types 95

to a float like this:

x = 3

y = float(x) # y is now a float with the value 3.0

You can also convert a float to an int by using the int() function, but keep in
mind that this will truncate the decimal part of the float. For example,

x = 3.7

y = int(x) # y is now an int with the value 3

You can convert a number to a complex type by using the complex() function.
You can pass in two arguments to the function, the real part, and the imaginary
part, separated by a + or - sign. For example

x = 3

y = 4

z = complex(x, y) # z is now a complex number with the value 3+4j

It’s also possible to convert a string representation of a number to a number
type using the int(), float(), and complex() functions. For example

x = “3.14”

y = float(x) # y is now a float with the value 3.14

5.1.2 Python Mathematical Functions
There are many built-in mathematical functions in Python that are included in
the math module. Here is a table of some of the most commonly used ones:

Table 5.1: mathematical functions

Function Description

math.ceil(x) Returns the smallest integer greater than or equal
to x

math.floor(x)
 Returns the largest integer less than or equal to x

math.exp(x) Returns e raised to the power of x

math.log(x, base) Returns	
the	
logarithm	
of	
x	
to	
the	
specified	
base	

(default is e)

math.log2(x) Returns the base-2 logarithm of x

math.log10(x) Returns the base-10 logarithm of x

math.pow(x, y) Returns x raised to the power of y

 96 Python Programming: A Step-by-Step Guide to Learning the Language

Function Description

math.sqrt(x) Returns the square root of x

math.acos(x), math.asin(x), math.
atan(x)

Returns the arc cosine, arc sine, arc tangent of x,
respectively.

math.cos(x), math.sin(x), math.
tan(x) Returns the cosine, sine, tangent of x, respectively.

math.degrees(x) Converts an angle from radians to degrees

math.radians(x) Converts an angle from degrees to radians

Please note that some of the trigonometric functions math.acos, math.asin,
math.atan, math.cos, math.sin, math.tan expect input angle in radian and the
functions that converts degrees to radian and vice-versa math.degrees(x),
math.radians(x) are also provided

There are many mathematical functions available in Python, some of which
are built-in to the language, while others are part of the standard library,
and still others are available through external libraries. Here’s in table 5.1
is the example program that demonstrates some of the common built-in and
standard library mathematical functions in Python:

Code 5.1 Illustration of mathematical functions

import math

Built-in functions

print(abs(-5)) # Absolute value

print(pow(2, 3)) # Raise to a power

print(round(3.14159)) # Round to nearest integer

math library functions

print(math.ceil(3.14159)) # Round up to nearest integer

print(math.floor(3.14159)) # Round down to nearest integer

print(math.sqrt(16)) # Square root

print(math.log10(100)) # Base-10 logarithm

print(math.sin(math.pi / 2)) # Sine of a value (in radians)

This program starts by importing the math library, which provides additional
mathematical functions not included in the built-in functions. The program
then demonstrates some of the built-in functions, such as abs(), which returns

Python Native Data Types 97

the absolute value of a number, pow(), which raises a number to a power,
and round(), which rounds a number to the nearest integer. The program then
demonstrates some of the functions available in the math library, such as
ceil(), which rounds a number up to the nearest integer, floor(), which rounds
a number down to the nearest integer, sqrt(), which returns the square root
of a number, log10() which returns base-10 logarithm of number and sin()
which returns the sine of a value (in radians).

Please note that this example is quite basic and Python offers a lot more
mathematical functions with additional libraries like NumPy, SciPy and
SymPy etc. These libraries provide additional functionality such as linear
algebra, optimization, signal processing, etc.

5.1.3 Python Trigonometric Functions
Python provides several trigonometric functions that can be used to perform
mathematical operations on angles. These functions are defined in the math
module and include:

Table 5.2: trignometric functions

Function Description

math.sin(x) Returns the sine of x radians.

math.cos(x) Returns the cosine of x radians.

math.tan(x) Returns the tangent of x radians.

math.asin(x) Returns the arc sine of x, in radians.

math.acos(x) Returns the arc cosine of x, in radians.

math.atan(x) Returns the arc tangent of x, in radians.

math.atan2(y, x) Returns the arc tangent of y/x, in radians.

math.sinh(x) Returns the hyperbolic sine of x.

math.cosh(x) Returns the hyperbolic cosine of x.

math.tanh(x) Returns the hyperbolic tangent of x.

math.asinh(x) Returns the inverse hyperbolic sine of x.

math.acosh(x) Returns the inverse hyperbolic cosine of x.

math.atanh(x) Returns the inverse hyperbolic tangent of x.

Here is an example of how you can use these functions in a Python script to
compute the sine, cosine, and tangent of 30 degrees:

98 Python Programming: A Step-by-Step Guide to Learning the Language

Code 5.2 Illustration of trigonometric functions

import math

Convert 30 degrees to radians
x = math.radians(30)

Compute the trigonometric functions

s = math.sin(x)

c = math.cos(x)

t = math.tan(x)

Print the results

print(“sin(30) =”, s)
print(“cos(30) =”, c)
print(“tan(30) =”, t)

You can also use trigonometric functions in numpy. Here in code 5.3 is the
example of numpy:

Code 5.3 Illustration of trigonometric functions in numpy

import numpy as np

Convert 30 degrees to radians
x = np.deg2rad(30)

Compute the trigonometric functions

s = np.sin(x)

c = np.cos(x)

t = np.tan(x)

Print the results

print(“sin(30) =”, s)

print(“cos(30) =”, c)

print(“tan(30) =”, t)

The numpy module also provides a number of other useful mathematical
functions, including functions for linear algebra, Fourier transforms, and
probability distributions.

Python Native Data Types 99

5.1.4 Python Random Number Functions
The random module in Python provides a number of functions for generating
random numbers and selecting random elements from a list or other data
structure. Here’s a table of some of the most commonly used functions:

Table 5.3: random number functions

Function Description

random.random() Returns	
a	
random	
float	
between	
0	
and	
1.

random.randint(a, b) Returns a random integer between a and b
(inclusive).

random.randrange(start, stop, step) Returns a randomly selected element from
range(start, stop, step)

random.uniform(a, b) Returns	
a	
random	
float	
between	
a	
and	
b.

random.triangular(low, high, mode)

Return	
a	
random	
float	
in	
the	
range	
[low,	
high]	

where the mode argument defaults to the
midpoint between the bounds, giving a symmetric
distribution.

random.choice(sequence) Selects a random element from a non-empty
sequence.

random.choices(population, k=1) Select k random elements from a given
population with replacement

random.sample(population, k) Select k unique random elements from a given
population without replacement

random.shuffle(sequence)
 Shuffles	
elements	
in	
a	
sequence	
in	
place.

Here’s an example of how you can use some of these functions to generate
random numbers:

Code 5.4: Illustration to random numbers

import random

Generate a random float between 0 and 1

print(random.random())

Generate a random integer between 1 and 10

print(random.randint(1, 10))

Generate a random float between 2 and 4

print(random.uniform(2, 4))

	

100 Python Programming: A Step-by-Step Guide to Learning the Language

Select a random element from a list

my_list = [1, 2, 3, 4, 5]

print(random.choice(my_list))

#shuffle a list

print(random.shuffle(my_list))

print(my_list)

5.1.5 Python Mathematical Constants
The math module in Python provides several mathematical constants that you
can use in your calculations. Here’s a table of some of the most commonly
used constants:

Table 5.4: mathematical functions

Constant Value

math.pi The mathematical constant pi (3.14159...)

math.e The mathematical constant e (2.71828...)

math.inf A
positive	
infinity	
value

math.nan A not-a-number value

math.tau tau (2*pi) constant

Here’s an example of how you can use these constants in a Python script:

Code 5.5: Illustration of python script

import math
Compute the area of a circle with radius 2
radius = 2

area = math.pi * (radius ** 2)

print(“Area of circle with radius 2:”, area)

Compute the value of e^2
e_squared = math.e ** 2
print(“e^2:”, e_squared)
Compute the value of tau
tau_val = math.tau
print(“tau:”,tau_val)

Python Native Data Types 101

5.2 Python Lists
The list is the most fundamental data structure in Python. Because the index
of the first element of the list is zero, the index of the second element is
one, and so on, the list is similar to an array in C, C++, or Java. The list, on
the other hand, is a collection of disparate data elements. That is, a list can
contain both numeric and character data.

Lists can be used to perform a variety of operations. Indexing, slicing,
adding, multiplying, and checking for membership are some examples. In the
following sections, we will illustrate all of these operations. Aside from that,
the Python language has a number of built-in functions that we will go over.

5.2.1 Creating a List
In Python, a list is created by placing elements inside square brackets []
separated by commas. For example, to create a list of integers:

my_list = [1, 2, 3, 4, 5]

You can also create a list of strings:

my_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

or a list of mixed data types:

my_list = [1, ‘a’, 3.14, True, [1, 2, 3]]

You can also create an empty list using the list() constructor or empty square
brackets []

empty_list = []

empty_list = list()

5.2.2 Traversing a List
In Python, you can traverse a list using a for loop. Here is an example of how
to use a for loop to print out each element in a list:

Code 5.6: Program to print each element of a list using for loop.

my_list = [1, 2, 3, 4, 5]

for element in my_list:

print(element)

The above code will output:

102 Python Programming: A Step-by-Step Guide to Learning the Language

1

2

3

4

5

You can also use while loop:

Code 5.7: Program to print element of a list using while loop.

my_list = [1, 2, 3, 4, 5]

i = 0

while i < len(my_list):

print(my_list[i])

i += 1

You can also use list comprehension to traverse the list:

Code 5.8: Program to traverse the element of a list.

my_list = [1, 2, 3, 4, 5]

[print(i) for i in my_list]

This will also output the same.

5.2.2.1 Indexing
In Python, indexing is used to access elements of a data structure, such as a
list or string, by specifying a numerical position or index. The first element
in a data structure has an index of 0, the second element has an index of 1,
and so on. For example, to access the first element in a list called “mylist”,
you would use the code 5.9:

mylist[0]

You can also use slicing to access a range of elements in a data structure. The
syntax for slicing is as follows:

mylist[start:end]

This will return a new list containing all elements from the start index
(inclusive) to the end index (exclusive).

Python Native Data Types 103

5.2.2.2 Traversing Nested Lists
Traversing nested lists in Python can be done using nested loops. A nested
loop is a loop that is inside another loop. The outer loop iterates over the
elements of the outer list, and the inner loop iterates over the elements of the
inner list.

Code 5.9 Program to traverse a nested list using nested for loops:

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

for sublist in nested_list:

for element in sublist:

print(element)

This code will print the elements of the nested list in order: 1, 2, 3, 4, 5, 6,
7, 8, 9.

Another way of traversing a nested list is using recursion. Recursion is a
technique where a function calls itself. This can be used to traverse a nested
list by recursing through each element of the list, until the base case is
reached. Here is an example of traversing a nested list using recursion:

Code 5.10: Program to use of recursion for traversing a list.

def traverse(lst):
for element in lst:

if type(element) == list:
traverse(element)

else:
print(element)

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
traverse(nested_list)

This will also print the elements of the nested list in order: 1, 2, 3, 4, 5, 6,
7, 8, 9.

You can also use list comprehension to flatten the nested list and then iterate
over the flattened list as shown in Code 5.13:

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened_list = [item for sublist in nested_list for item in sublist]
for element in flattened_list:

print(element)

104 Python Programming: A Step-by-Step Guide to Learning the Language

This will also print the elements of the nested list in order: 1, 2, 3, 4, 5, 6,
7, 8, 9.

5.2.2.3 Negative Indexing
In Python, negative indexing is a way to access elements of a data structure,
such as a list or string, by specifying a negative numerical position or index.
The last element in a data structure has an index of -1, the second to last
element has an index of -2, and so on.

Positive Indexing

0 1 2 3 4 5 6 7 8 9

H E L L O W O R L D

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2

Negative Indexing

For example, to access the last element in “mylist”, you would use the code:

mylist[-1]

Here is an example of using negative indexing to access the last element of
a list:

Code 5.11: To access element from a list using negative indexing.

mylist = [1, 2, 3, 4, 5]

print(mylist[-1]) # Output: 5

Code 5.12: To access the second to last element of a string:

mystring = “hello”

print(mystring[-2]) # Output: “l”

You can also use negative indexing with slicing to access a range of elements
in a data structure. For example, to get a sub-list of the second to last 3
elements in “mylist”, you would use the code 5.13:

mylist[-3:-1] # Output: [3,4]

Negative indexing is useful when you want to access elements from the end
of a data structure without knowing the exact size of the data structure. It can
also make your code more readable by eliminating the need to subtract the
size of the data structure from the index to find the corresponding element.

Python Native Data Types 105

5.2.2.4 Slicing
In Python, “slicing” is a way to extract a portion of a sequence (e.g. a string,
list, or tuple) by specifying two indices, a start index and an end index,
separated by a colon. The slice will include all elements from the start index
up to, but not including, the end index. For example, if we have a list called
my_list, we can extract the second through fourth elements as shown in code
5.14 :

sub_list = my_list[1:4]

This will create a new list called sub_list that contains the elements at index

1, 2, and 3 of my_list. Negative indexing can also be used.

You can also specify a step with the slicing, like my_list[start:end:step]

Start: by default starts from 0 index.

End: last index of the element in the given range.

Step: to increment or decrement in list by given steps.

Also, you can slice a string using a similar approach.

sub_string = my_string[1:4]

This will create a new string called sub_string that contains the characters at
index 1, 2, and 3 of my_string.

5.2.3 Changing or Adding Elements to a List
There are several ways to change or add elements to a list in Python.

Using the assignment operator =: You can change an existing element in
a list by specifying its index and assigning a new value to it. For example

my_list[2] = ‘new value’

Using the append() method: This method is used to add a new element to
the end of a list. For example:

my_list.append(‘new element’)

Using the insert() method: This method is used to add a new element at a
specific index in a list. For example:

my_list.insert(2, ‘new element’)

Using the extend() method: This method is used to add multiple elements
to a list. It takes an iterable as an argument and adds each element of that
iterable to the list. For example:

106 Python Programming: A Step-by-Step Guide to Learning the Language

my_list.extend([1, 2, 3])

Using the + operator: This operator can be used to concatenate two or more
lists. For example:

new_list = my_list + [4, 5, 6]

Using the * operator: This operator can be used to duplicate a list a certain
number of times. For example:

new_list = my_list * 3

Note that all of these methods except the assignment operator will modify the
original list, while the assignment operator creates a new list.

5.2.4 List Methods
In Python, a list is a built-in data type that has a number of useful built-in
methods for working with its elements. Here are some commonly used list
methods:

Table 5.5 : List of methods

Method Description Modifies 
Original List Returns

append(element) Adds an element to the end of
the list Yes None

extend(iterable) Adds all the elements from an
iterable to the end of the list Yes None

insert(index,
element)

Inserts	
an	
element	
at	
a	
specific	

index in the list Yes None

remove(element)
Removes	
 the	
first	
occurrence	

of	
the	
specified	
element	
from	

the list

Yes None

pop(index) Removes and returns the
element	
at	
the	
specified	
index

Yes
The
removed
element

index(element)
Returns	
the	
index	
of	
the	
first	

occurrence	
 of	
 the	
 specified	

element in the list

No The index of
the element

count(element)
Returns the number of times
the	
specified	
element	
appears	

in the list

No The count of
the element

sort() Sorts the elements of the list in
ascending order Yes None

Python Native Data Types 107

Method Description Modifies 
Original List Returns

reverse() Reverses the order of the
elements in the list Yes None

clear() Removes all elements from the
list Yes None

copy() Returns a shallow copy of the
list No A new list

deepcopy() Returns a deep copy of the list No A new list

len() Returns the number of elements
in the list No The length

of the list

min() Returns the smallest element in
the list No

The
minimum
element

max() Returns the largest element in
the list No

The
maximum
element

sum() Returns the sum of all elements
in the list No The sum of

the elements

5.2.5 List Functions
Here is a table that summarizes some of the commonly used list functions
in Python:

Table 5.6 : List of functions

Function Description Returns

len(list) Returns the number of elements
in the list The length of the list

max(list) Returns the largest element in the
list The maximum element

min(list) Returns the smallest element in
the list The minimum element

sum(list) Returns the sum of all elements in
the list The sum of the elements

sorted(list) Returns the sorted copy of the list A new sorted list

reversed(list) Returns the iterator of the reversed
copy of the list

A iterator of the reversed
list

enumerate(list)
Returns an enumerate object,
containing the index and value of
the list

An enumerate object

108 Python Programming: A Step-by-Step Guide to Learning the Language

Function Description Returns

zip(list1, list2, ...)

Returns an iterator of tuples,
where the i-th tuple contains the
i-th element from each of the input
lists.

An iterator of tuples

filter(function,	
iterable)

Returns an iterator from elements
of iterable for which the function
returns true.

An iterator

map(function, iterable)
Applies function to all items of
iterable and returns an iterator of
the results.

An iterator

5.2.6 List Comprehension
List comprehension is a concise way to create a new list in Python. Here is a
table that explains the syntax and usage of list comprehension:

Table 5.7 : List comprehension

Syntax Description Example

[expression	
 for	

item	
in	
iterable]

Creates a new list by applying
the expression to each item in
the iterable

[x**2	
for	
x	
in	
range(10)]	
creates	
a	

new list containing the squares of
numbers 0-9

[expression	
 for	

item in iterable if
condition]

Creates a new list by applying
the expression to each item in
the	
 iterable	
 that	
satisfies	
 the	

condition

[x**2	
for	
x	
in	
range(10)	
if	
x	
%	
2	
==	

0]	
creates	
a	
new	
list	
containing	

the squares of even numbers 0-9

[expression	
 for	

item1 in iterable1
for item2 in
iterable2]

Creates a new list by applying
the expression to each item in
the iterable1 and iterable2

[x*y	
 for	
x	
 in	
 range(3)	
 for	
y	
 in	

range(3)]	
 creates	
 a	
 new	
 list	

containing the product of every
combination of numbers 0-2

List comprehension can be a useful tool when you need to create a new list
based on some existing data or logic. It allows you to write more readable
and efficient code, as it eliminates the need for explicit loops and temporary
variables.

Note that list comprehension is not always the best choice, if the comprehension

becomes too complex it might be better to use a for loop.

5.2.7 List Membership Test
In Python, you can use the in keyword to test if an element is present in a
list. The membership test returns True if the element is in the list, and False
otherwise. For example:

Python Native Data Types 109

Code 5.18: To check whether given number exists in list or not.

my_list = [1, 2, 3, 4, 5]

print(3 in my_list) # True

print(6 in my_list) # False

You can also use not in to test if an element is not present in a list:

print(6 not in my_list) # True

You can also use any() function with a generator expression to check if any
of the elements in the list satisfy a certain condition.

numbers = [1,2,3,4,5,6]

result = any(x>4 for x in numbers)

print(result) # True

You can also use all() functions with a generator expression to check if all of
the elements in the list satisfy a certain condition.

result = all(x>0 for x in numbers)

print(result) # True

Keep in mind that the membership test is generally faster for lists than for
other iterable types, like sets or tuples, because lists are ordered and have a
specific index for each element.

Also, if you are trying to find out the existence of elements in a large list,

using sets is more efficient than using lists.

5.3 Python Tuples
In Python, a tuple is a collection of ordered, immutable elements. Tuples are
defined using parentheses, with elements separated by commas. For example,
a tuple containing the integers 1, 2, and 3 would be written as (1, 2, 3). Tuples
can contain elements of different types, such as integers, strings, and other
objects. Because tuples are immutable, their elements cannot be modified
once they are created. However, elements within a tuple can be accessed by
their index, just like a list. Tuples are often used to store related pieces of
data, such as a name and an age.

110 Python Programming: A Step-by-Step Guide to Learning the Language

5.3.1 Creating a Tuple
In Python, a tuple can be created by placing elements inside parentheses,
separated by commas. For example:

Code 5.19: Illustration of creating a tuple

Creating a tuple with 3 elements

my_tuple = (1, “hello”, 3.14)

Creating a tuple with 2 elements

my_tuple2 = (“apple”, “banana”)

Creating an empty tuple

my_empty_tuple = ()

You can also create a tuple without using parentheses by using a trailing
comma. For example:

Creating a tuple with one element

my_tuple3 = “apple”,

It’s also possible to create a tuple from a list or another iterable using the
tuple() function:

Code.5.20: Illustration of tuple from list

Creating a tuple from a list

my_list = [1, 2, 3]

my_tuple4 = tuple(my_list)

Creating a tuple from a string

my_string = “hello”

my_tuple5 = tuple(my_string)

You can also use the * operator to unpack the elements of an iterable into a
new tuple. As shown in Code 5.21 below:

Unpacking elements of a list into a tuple

my_list = [1, 2, 3]

my_tuple6 = *my_list

Python Native Data Types 111

As you can see, creating a tuple in Python is quite simple and straightforward.
The key thing to remember is that tuples are collections of ordered and
immutable elements, and are defined using parentheses and separated by
commas.

5.3.2 Unpacking Tuple
To unpack a tuple in a program, you can use the assignment operator (=) in
combination with multiple variables. The number of variables on the left side
of the operator must match the number of elements in the tuple.

For example, if you have the tuple (1, 2, 3), you can unpack it into separate
variables like this:

a, b, c = (1, 2, 3)

Now the variable a will contain the value 1, b will contain the value 2, and

c will contain the value 3.

You can also use the tuple unpacking feature in a for loop to iterate through

the elements of the tuple:

Code 5.22: Illustration of unpacking tuple

my_tuple = (1, 2, 3)

for element in my_tuple:

print(element)

This will output:

1

2

3

You can also use * operator to unpack remaining items in the tuple:

a, *b = (1, 2, 3, 4, 5)

Now, a=1, b=[2, 3, 4, 5]

5.3.3 Traversing Elements in a Tuple
There are several ways to traverse the elements in a tuple:

1. Using a for loop: You can use a for loop to iterate through the elements
in a tuple. For example:

112 Python Programming: A Step-by-Step Guide to Learning the Language

my_tuple = (1, 2, 3)

for element in my_tuple:

print(element)

2. Using the tuple() function: The tuple() function allows you to access
the elements of a tuple by index. For example:

my_tuple = (1, 2, 3)

for i in range(len(my_tuple)):

print(my_tuple[i])

3. Using the enumerate() function: The enumerate() function allows you
to access both the index and the value of each element in a tuple. For
example:

my_tuple = (1, 2, 3)

for index, value in enumerate(my_tuple):

print(index, value)

4. Using list comprehension :

my_tuple = (1, 2, 3)

[print(i) for i in my_tuple]

All the above code snippet will output:

1

2

3

Note that, Tuple are immutable so you can not change any element of tuple,
but you can traverse it.

5.3.3.1 Indexing
In Python, indexing refers to the process of accessing individual elements
of a data structure, such as a list, tuple, or string. These data structures are
indexed using square brackets [], with the index starting at 0 for the first
element. For example, if you have a list of numbers called “numbers” and
you want to access the first element, you would use the following syntax:

numbers[0]

Python Native Data Types 113

5.3.3.2 Negative Indexing
In Python, negative indexing allows you to access elements in a list or array
by counting from the end of the list or array, rather than the beginning. For
example, if you have a list called my_list and you want to access the last
element of the list, you can use the index -1 to do so: my_list[-1]. Similarly,
you can use -2 to access the second to last element, -3 to access the third to
last element, and so on.

5.3.3.3 Tuple Slicing
In Python, tuple slicing allows you to access a range of elements in a tuple
by specifying a start and stop index, separated by a colon. For example, if
you have a tuple called my_tuple and you want to access the second and third
elements of the tuple, you can use the slice my_tuple[1:3]. This will return
a new tuple containing the second and third elements of the original tuple.

Code 5.23: A program that demonstrates tuple slicing in Python:

Define a tuple

my_tuple = (1, 2, 3, 4, 5)

Use tuple slicing to access a range of elements

sliced_tuple = my_tuple[1:4]

print(sliced_tuple) # Output: (2, 3, 4)

Use negative indexing with tuple slicing

sliced_tuple = my_tuple[-4:-1]

print(sliced_tuple) # Output: (2, 3, 4)

Use step value in tuple slicing

sliced_tuple = my_tuple[1:5:2]

print(sliced_tuple) # Output: (2, 4)

In this example, we first define a tuple my_tuple containing the elements 1,
2, 3, 4, and 5. Then we use tuple slicing to access a range of elements by
specifying a start and stop index. We also use negative indexing with tuple
slicing and step value in tuple slicing to get desired output.

114 Python Programming: A Step-by-Step Guide to Learning the Language

5.3.3.4 Changing/Updating a Tuple
In Python, tuples are immutable, which means that their elements cannot be
modified once they are created. However, you can create a new tuple with
the desired elements, and then reassign it to the same variable, effectively
updating the tuple. For example, if you want to change the second element
of a tuple called my_tuple from 2 to 10, you would create a new tuple with
the desired elements, and then reassign it to my_tuple as shown in Code 5.30:

Code 5.24: updating a tuple

Define a tuple

my_tuple = (1, 2, 3, 4, 5)

Create a new tuple with the desired elements

new_tuple = list(my_tuple)

new_tuple[1] = 10

new_tuple = tuple(new_tuple)

Reassign the new tuple to the same variable

my_tuple = new_tuple

print(my_tuple) # Output: (1, 10, 3, 4, 5)

Another way to change/update a tuple is shown in code 5.24 by converting it
to list and then updating and again converting it back to tuple.

Code 5.25: Illustration of updating a tuple

Define a tuple

my_tuple = (1, 2, 3, 4, 5)

Convert the tuple to a list

my_list = list(my_tuple)

Update the list

my_list[1] = 10

Convert the list back to a tuple

my_tuple = tuple(my_list)

print(my_tuple) # Output: (1, 10, 3, 4, 5)

Python Native Data Types 115

It’s important to note that both these methods create a new tuple and reassign
it to the same variable, but the original tuple remains unchanged.

5.3.3.5 Deleting a Tuple
In Python, you can delete a tuple by using the del statement and specifying
the tuple variable that you want to delete. For example, if you have a tuple
called my_tuple and you want to delete it, you can use the following code
5.32:

my_tuple = (1, 2, 3, 4, 5)

del my_tuple

print(my_tuple) # Output: NameError: name ‘my_tuple’ is not defined

As you can see, after the tuple is deleted, trying to access it will result in a
“NameError: name ‘my_tuple’ is not defined” because my_tuple variable no
longer exists.

It’s important to note that once a tuple is deleted, it cannot be accessed or

used again. Also, deleting a tuple does not remove its elements from memory,

only the variable that refers to the tuple is deleted.

5.3.3.6 Python Tuple Methods
Here is a table that lists some of the most commonly used Python tuple
methods along with their descriptions:

Table 5.8: Python tuple methods

Method Description

count() Returns	
the	
number	
of	
occurrences	
of	
a	
specific	
element	
in	
the	
tuple

index() Returns	
the	
index	
of	
the	
first	
occurrence	
of	
a	
specific	
element	
in	
the	

tuple

len() Returns the number of elements in the tuple

tuple() Returns a tuple version of an iterable object

Note that this is not an exhaustive list of tuple methods, there are more
methods that can be used with tuples like max(), min(), sorted() etc. You can
check the python documentation for more details.

116 Python Programming: A Step-by-Step Guide to Learning the Language

5.3.3.7 Python Tuple Functions

Table 5.9: Python tuple methods

Function Description

all() Returns True if all elements in the tuple are true, False otherwise

any() Returns True if at least one element in the tuple is true, False
otherwise

enumerate() Returns an enumerate object that contains the index and value of
each element in the tuple

filter()
 Returns an iterator from elements of an iterable for which a function
returns true

len() Returns the number of elements in the tuple

max() Returns the largest element in the tuple

min() Returns the smallest element in the tuple

sorted() Returns a new sorted list from elements in the tuple

Please note that this is not an exhaustive list of tuple functions, there are
more functions that can be used with tuples like zip(), map(), reduce() etc.
You can check the python documentation for more details.

5.3.3.8 Advantages of Tuple
There are several advantages to using tuples in Python:

1. Performance: Tuples are faster than lists because they are immutable
and require less memory.

2. Immutable: Because tuples are immutable, they are safe to use as keys
in a dictionary or as elements of a set, whereas lists cannot be used as
keys in a dictionary or as elements of a set.

3. Safety: Tuples provide a way to separate and store related data that
should not be modified. For example, you can use a tuple to store the x
and y coordinates of a point, and be sure that the values won’t change
accidentally.

4. Readability: Tuples can make code more readable by allowing you to
group related data together. This makes it easy to understand the meaning
of the data and what it represents.

5. Easy to use: Tuples are easy to create and use. They have a simple
syntax and can be created with or without parentheses.

Python Native Data Types 117

6. Iterable:

Tuples are iterable which means you can iterate over the
elements of a tuple using a for loop.

7. Return multiple values: Tuples can be used to return multiple values
from a function, which is more efficient than using a data structure like
a list or dictionary.

5.4 Python Sets
In Python, a set is a collection of unique elements. Sets are defined using
curly braces {} or the set() function.

Code 5.26: To create a set in Python:

Using curly braces

my_set = {1, 2, 3, 4, 5}

Using the set() function

my_set = set([1, 2, 3, 4, 5])

Sets are unordered, which means that the elements in a set have no specific
order. Sets are also mutable, which means that you can add, remove, and
update elements in a set after it is created. For example, you can use the
add() method to add an element to a set, the remove() method to remove an
element from a set, and the update() method to add multiple elements to a
set at once.

Sets also support mathematical set operations like union, intersection and
difference.

Code 5.27: Illustration of union, intersection and difference

Define two sets
set1 = {1, 2, 3}

set2 = {3, 4, 5}

Union

print(set1.union(set2)) # Output: {1, 2, 3, 4, 5}

Intersection

print(set1.intersection(set2)) # Output: {3}

Difference

print(set1.difference(set2)) # Output: {1, 2}

118 Python Programming: A Step-by-Step Guide to Learning the Language

It’s important to note that sets do not allow duplicate values, if you try to add
a duplicate value to a set, it will be ignored.

5.4.1 Creating a Set
In Python, a set is a collection of unique items. You can create a set using
curly braces {} or the set() function. For example:

Using curly braces

my_set = {1, 2, 3}

Using the set() function

my_set = set([1, 2, 3])

You can also create a set from a list or other iterable by passing it as an
argument to the set() function as given in code 5.36:

my_list = [1, 2, 3]

my_set = set(my_list)

5.4.2 Changing/Adding Elements to a Set
In Python, sets are mutable, meaning that elements can be added or removed
from a set after it is created. To add an element to a set, use the add() method.
For example:

my_set = {1, 2, 3}

my_set.add(4)

print(my_set)

This will add the element 4 to the set my_set.

To add multiple elements to a set at once, use the update() method. This

method can take any iterable, such as a list or another set, as an argument.

For example:

my_set = {1, 2, 3}

my_set.update([4, 5, 6])

print(my_set)

Python Native Data Types 119

5.4.3 Removing Elements from a Set
To remove an element from a set, use the remove() method. If the element is
not present in the set, a KeyError will be raised. For example:

my_set = {1, 2, 3}

my_set.remove(2)

print(my_set)

This will remove the element 2 from the set my_set.

Alternatively, you can use the discard() method to remove an element from

a set. This method does not raise an error if the element is not present in the

set.

my_set = {1, 2, 3}

my_set.discard(4)

print(my_set)

This will not raise any error, as 4 is not in the set my_set

5.4.4 Python Set Operations
In Python, sets are a built-in data type that can be used to store a collection
of unique elements. The following are some common set operations that can
be performed in Python:

1. Union: The union of two sets returns a new set that contains all the
elements from both sets. The union operation is performed using the |
operator or the union() method.

2. Intersection: The intersection of two sets returns a new set that contains
only the elements that are common to both sets. The intersection operation
is performed using the & operator or the intersection() method.

3. Difference: The difference of two sets returns a new set that contains the
elements that are in the first set but not in the second set. The difference
operation is performed using the - operator or the difference() method.

4. Symmetric Difference: The symmetric difference of two sets returns
a new set that contains elements that are in either of the sets but not
in both. The symmetric difference operation is performed using the ^
operator or the symmetric_difference() method.

120 Python Programming: A Step-by-Step Guide to Learning the Language

5. Subset: To check if a set is a subset of another set, you can use the <=
operator or the issubset() method.

5. Superset: To check if a set is a superset of another set, you can use the
>= operator or the issuperset() method.

It’s worth noting that all these set operations return a new set and the original
sets remain unchanged.

5.4.4.1 Set Union
In Python, the union of two sets can be found using the union() method or
the | operator. For example, given two sets A and B, the union can be found
as follows:

A = {1, 2, 3}

B = {3, 4, 5}

C = A.union(B) # C = {1, 2, 3, 4, 5}

D = A | B # D = {1, 2, 3, 4, 5}

Both A.union(B) and A | B will return a new set that contains all the elements
from both sets A and B, without duplicates.

5.4.4.2 Set Intersection
In Python, the intersection of two sets can be found using the intersection()
method or the & operator. For example, given two sets A and B, the
intersection can be found as follows:

A = {1, 2, 3}

B = {2, 3, 4}

C = A.intersection(B) # C = {2, 3}

D = A & B # D = {2, 3}

Both A.intersection(B) and A & B will return a new set that contains the
elements that exist in both sets A and B.

5.4.4.3 Set Difference
In Python, the difference between two sets can be found using the difference()
method or the - operator. For example, given two sets A and B, the difference
between A and B can be found as follows:

Python Native Data Types 121

Code 5.42:

A = {1, 2, 3}

B = {2, 3, 4}

C = A.difference(B) # C = {1}

D = A - B # D = {1}

Both A.difference(B) and A - B will return a new set that contains the elements

that exist in set A but not in set B.

It’s also worth mentioning Symmetric difference, it can be found using the

symmetric_difference() method or the ^ operator. It returns a set of elements

that is in either of the sets but not in both.

A = {1, 2, 3}

B = {2, 3, 4}

C = A.symmetric_difference(B) # C = {1, 4}

D = A ^ B # D = {1, 4}

5.4.4.4 Set Symmetric Difference
In Python, the symmetric difference of two sets can be found using the
symmetric_difference() method or the “^” operator. For example, if A = {1,
2, 3} and B = {2, 3, 4}, you can find the symmetric difference of A and B
using the following code 5.44:

A = {1, 2, 3}

B = {2, 3, 4}

Using the symmetric_difference() method

symmetric_diff = A.symmetric_difference(B)

print(symmetric_diff) # output: {1, 4}

Using the “^” operator

symmetric_diff = A ^ B

print(symmetric_diff) # output: {1, 4}

Both the symmetric_difference() method and the “^” operator will return a
new set containing the symmetric difference of the two sets.

122 Python Programming: A Step-by-Step Guide to Learning the Language

5.4.5 Python Set Methods
In Python, sets are built-in data structures that are used to store unique
elements. Sets are mutable and unordered, and they are defined using curly
braces {} or the built-in set() function. Here are some common methods that
can be used with sets in Python:

• add(element): Adds an element to the set.
• clear(): Removes all elements from the set.
• copy(): Returns a shallow copy of the set.
• difference(set): Returns a set containing the elements that are only in the

original set and not in the specified set.
• difference_update(set): Removes the elements that are in the specified

set from the original set.
• discard(element): Removes an element from the set if it is present.
• intersection(set): Returns a set containing the elements that are common

to both the original set and the specified set.
• intersection_update(set): Removes the elements that are not in the

specified set from the original set.
• isdisjoint(set): Returns True if the set has no elements in common with

the specified set.
• issubset(set): Returns True if all elements of the set are in the specified

set.
• issuperset(set): Returns True if all elements of the specified set are in

the original set.
• pop(): Removes and returns an arbitrary element from the set. If the set

is empty, it raises a KeyError.
• remove(element): Removes an element from the set. If the element is

not in the set, it raises a KeyError.
• symmetric_difference(set): Returns a set containing the elements that

are in either the original set or the specified set, but not in both.
• symmetric_difference_update(set): Inserts the elements from the

specified set that are not already in the original set, and removes the
elements from the original set that are in the specified set.

• union(set): Returns a set containing all elements from the original set
and the specified set.

• update(set): Adds the elements from the specified set to the original set.

Python Native Data Types 123

Additionally, there are some other in-built methods available like len(), min(),

max() etc.

You can use these methods to perform various operations on sets in Python.

It’s also worth noting that python set has also support of set comprehension,

which allows you to create a new set using a single line of code.

5.4.6 The in Operator
In Python, the in operator is used to check if an element is present in a
sequence, such as a list, tuple, set, or string. The in operator returns a Boolean
value indicating whether the element is found in the sequence. For example,
if you have a list of numbers called numbers and you want to check if the
number 5 is in the list, you can use the in operator like shown in below.

numbers = [1, 2, 3, 4, 5]

if 5 in numbers:

print(“5 is in the list.”)

5.4.7 Python Set Functions
In Python, the built-in set functions are used to perform various operations
on sets, such as checking if all elements meet a certain condition, finding the
number of elements in a set, or finding the maximum or minimum element
in a set. These functions can be used on any iterable, which includes lists,
tuples, and sets. Here are some examples of how you can use the built-in set
functions in a Python program:

using the all() function

numbers = {1, 2, 3, 4, 5}

if all(x > 0 for x in numbers):

print(“All numbers in the set are positive.”)

using the any() function

numbers = {1, 2, 3, 4, 5}

if any(x > 4 for x in numbers):

print(“There are numbers greater than 4 in the set.”)

124 Python Programming: A Step-by-Step Guide to Learning the Language

using the len() function

numbers = {1, 2, 3, 4, 5}

print(“The set has”, len(numbers), “elements.”)

using the max() function

numbers = {1, 2, 3, 4, 5}

print(“The largest element in the set is”, max(numbers))

using the min() function

numbers = {1, 2, 3, 4, 5}

print(“The smallest element in the set is”, min(numbers))

5.4.8 Frozen Sets
In Python, a frozen set is a built-in immutable set data type. This means
that once a frozen set is created, its elements cannot be added, removed or
modified. Frozen sets are defined using the frozenset() built-in function or by
using curly braces with a ‘f’ prefix. A frozen set can be useful in situations
where you want to use a set as a key in a dictionary or as an element in
another set, but you don’t want the set to be modified. Here’s an example of
how to create a frozen set:

Creating a frozen set using the frozenset() function

fruits = frozenset([“apple”, “banana”, “cherry”])

print(fruits) # output: frozenset({‘apple’, ‘banana’, ‘cherry’})

Creating a frozen set using a set literal

fruits = f{‘apple’, ‘banana’, ‘cherry’}

print(fruits) # output: frozenset({‘apple’, ‘banana’, ‘cherry’})

As you can see, the output of the print statement is a frozenset object.

You can use the same set methods, such as union() and intersection() on frozen

sets and also use the built-in set functions such as len(), min() and max() etc.

Because frozen sets are immutable, you can’t add or remove elements from

them after they’ve been created, and you can’t modify their elements either.

Python Native Data Types 125

fruits.add(“orange”) # raises an error

fruits.remove(“banana”) # raises an error

fruits.clear() # raises an error

Frozen sets are useful in situations where you need a set that can be used as
a key in a dictionary, or as an element in another set, but you don’t want the
set to be modified.

5.5 Python Dictionary
In Python, a dictionary is a built-in data structure that stores key-value pairs,
where each key is unique. Dictionaries are mutable, which means that you
can add, remove, or modify elements after the dictionary has been created.

5.5.1 Creating a Dictionary
Dictionaries are defined using curly braces {} or the built-in dict() function.
Here’s an example of how to create a dictionary:

Creating a dictionary using curly braces

person = {“name”: “John”, “age”: 30, “city”: “New York”}

Creating a dictionary using the dict() function

person = dict(name=”John”, age=30, city=”New York”)

In this example, the dictionary “person” contains three key-value pairs:
“name” is the key and “John” is the value, “age” is the key and 30 is the
value, and “city” is the key and “New York” is the value.

5.5.2 Accessing a Dictionary
In Python, a dictionary is a collection of key-value pairs, where each key
is unique. To access a value in a dictionary, you can use the key in square
brackets [] after the dictionary variable name. For example, if you have a
dictionary called “my_dict” with a key “name” and a value “John”, you can
access the value like this:

my_value = my_dict[“name”]

print(my_value) # Output: “John”

126 Python Programming: A Step-by-Step Guide to Learning the Language

You can also use the get() method to access a value. This method takes a key
as an argument and returns the value for that key if it exists in the dictionary,
otherwise it returns None (or a default value if specified). For example:

my_value = my_dict.get(“name”)

print(my_value) # Output: “John”

If you want to check if a key is present in the dictionary or not, you can use
the in keyword. For example:

if “name” in my_dict:

print(“name key found”)

else:

print(“name key not found”)

It will return “name key found”

5.5.3 Updating a Dictionary
In Python, you can update the values of a dictionary by using the key in
square brackets [] after the dictionary variable name, and assigning a new
value to it. For example, if you have a dictionary called “my_dict” with a key
“name” and a value “John”, you can update the value like this:

my_dict[“name”] = “Bob”

print(my_dict) # Output: {“name”: “Bob”}

You can also use the update() method to update multiple key-value pairs in a
dictionary at once. This method takes another dictionary as an argument and
adds its key-value pairs to the original dictionary. For example:

new_dict = {“age”: 25, “gender”: “male”}

my_dict.update(new_dict)

print(my_dict) # Output: {“name”: “Bob”, “age”: 25, “gender”: “male”}

my_dict[“address”] = “NYC”

print(my_dict) # Output: {“name”: “Bob”, “age”: 25, “gender”: “male”,

“address”: “NYC”}

It will add the key “address” to the dictionary with value “NYC”

Python Native Data Types 127

5.5.4 Removing or Deleting Elements of a Dictionary
In Python, you can remove or delete elements from a dictionary using the
following methods:

1. The del keyword: You can use the del keyword to remove a specific
key-value pair from a dictionary. For example:

del my_dict[“name”]

print(my_dict) # Output: {“age”: 25, “gender”: “male”}

This will remove the key-value pair with the key “name” from the
dictionary “my_dict”.

2. The pop() method: The pop() method removes a specific key-value pair
from a dictionary and returns its value. If the key is not found in the
dictionary, it raises a KeyError exception. For example:

value = my_dict.pop(“age”)

print(value) # Output: 25

print(my_dict) # Output: {“gender”: “male”}

4. The popitem() method: The popitem() method removes and returns an
arbitrary key-value pair from a dictionary. If the dictionary is empty, it
raises a KeyError exception. For example:

item = my_dict.popitem()

print(item) # Output: (“gender”, “male”)

print(my_dict) # Output: {}

5. The clear() method: The clear() method removes all key-value pairs
from a dictionary. For example:

my_dict.clear()
print(my_dict) # Output: {}

5.5.5 Python Dictionary Methods
Python’s built-in dictionary data type provides several methods that can be
used to manipulate dictionaries. Here are some of the most commonly used
dictionary methods:

Method Description

dict.clear() Removes all items from the dictionary.

dict.copy() Returns a shallow copy of the dictionary.

128 Python Programming: A Step-by-Step Guide to Learning the Language

Method Description

dict.fromkeys(seq[,	

value])

Returns a new dictionary with keys from the given sequence and
all values set to the given value (defaults to None).

dict.get(key[,	

default])

Returns the value for key if key is in the dictionary, else default. If
default is not given, it defaults to None, so that this method never
raises a KeyError.

dict.items() Returns a view object that displays a list of dictionary’s (key,
value) tuple pairs.

dict.keys() Returns a view object that displays a list of all the keys in the
dictionary.

dict.pop(key[,	

default])

Removes and returns the value for key if key is in the dictionary,
else default. If default is not given and key is not in the dictionary,
a KeyError is raised.

dict.popitem()
Remove and return an arbitrary (key, value) item pair from the
dictionary. If the dictionary is empty, calling popitem() raises a
KeyError.

dict.
setdefault(key[,	

default])

If the key is in the dictionary, return its value. If not, insert a key
with a value of default and return default. default defaults to None.

dict.update([other])

Update the dictionary with the key/value pairs from other,
overwriting existing keys. If other is a dictionary, the key/value
pairs are added to the dictionary. If other is an iterable of key/
value pairs, the pairs are added to the dictionary. If other is a
mapping, the mapping’s keys must be new-style strings to be
accepted as keys.

dict.values() Returns a view object that displays a list of all the values in the
dictionary.

5.5.6 Python Dictionary Membership Test
In Python, there are several ways to test for membership in a dictionary,
which are:

1.

in operator: You can use the in operator to check if a key is present in
a dictionary. For example:

>>> d = {‘a’: 1, ‘b’: 2, ‘c’: 3}
>>> ‘a’ in d
True
>>> ‘d’ in d
False

Python Native Data Types 129

2. dict.keys() method: You can use the keys() method of a dictionary to
get a view of all the keys in the dictionary, which can be used to test for
membership. For example:

>>> d = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> ‘a’ in d.keys()

True

>>> ‘d’ in d.keys()

False

3. dict.__contains__() method: You can use the __contains__() method of
a dictionary to check if a key is present in the dictionary. For example:

>>> d = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> d.__contains__(‘a’)

True

>>> d.__contains__(‘d’)

False

in operator and keys() method is generally recommended for membership
testing as they are more readable and easy to understand, contains method is
also same as in operator but it is less readable.

5.5.7 Python Dictionary Functions
In addition to the methods that can be used to manipulate dictionaries,
Python also provides several built-in functions that can be used to work with
dictionaries.

Function Description

len(dict) Returns the number of items in the dictionary.

str(dict) Returns a string representation of the dictionary.

type(variable) Returns the type of the passed variable. If passed
variable is dictionary then it will return dict.

sorted(dict) Returns a sorted list of the keys in the dictionary.

dict(seq) Creates a new dictionary from a list of key-value pairs.

zip(*iterables)
Returns an iterator of tuples, where the i-th tuple
contains the i-th element from each of the argument
sequences or iterables.

130 Python Programming: A Step-by-Step Guide to Learning the Language

Function Description

enumerate(iterable, start=0)

Returns an enumerate object. iterable must be a
sequence, an iterator, or objects supporting the
iteration protocol. The start parameter defaults to 0.
The enumerate object yields pairs containing a count
(from start which defaults to 0) and a value yielded by
the iterable argument.

all(iterable)

Return True if all elements of the iterable are true. If
the iterable is empty, return True. Equivalent to: def
all(iterable): for element in iterable: if not element:
return False return True

any(iterable)

Return True if any element of the iterable is true. If
the iterable is empty, return False. Equivalent to: def
any(iterable): for element in iterable: if element: return
True return False

5.6 Python Strings
In Python, a string is a sequence of characters enclosed in quotes (either
single or double). For example:

>>> s = “Hello, World!”

>>> s1 = ‘Hello, World!’

Method Description

str.capitalize() Returns	
 a	
 copy	
 of	
 the	
 string	
 with	
 its	
 first	
 character	

capitalized and the rest lowercase.

str.upper() Returns a copy of the string in uppercase.

str.lower() Returns a copy of the string in lowercase.

str.count(sub[,	
 start[,	

end]])

Returns the number of non-overlapping occurrences of
substring	
sub	
in	
the	
range	
[start,	
end].	
Optional	
arguments	

start and end are interpreted as in slice notation.

str.find(sub[,	
start[,	
end]])

Returns the lowest index in the string where substring sub
is	
found	
within	
the	
slice	
s[start:end].	
Optional	
arguments	

start and end are interpreted as in slice notation. Return -1
if sub is not found.

str.replace(old,	
 new[,	

count])

Returns a copy of the string with all occurrences of substring
old replaced by new. If the optional argument count is
given,	
only	
the	
first	
count	
occurrences	
are	
replaced.

str.split([sep[,	
maxsplit]])

Returns a list of the words in the string, using sep as the
delimiter string. If maxsplit is given, at most maxsplit splits
are	
done.	
If	
maxsplit	
is	
not	
specified	
or	
-1,	
then	
there	
is	
no	

limit on the number of splits.

 Python Native Data Types 131

Method Description

str.join(iterable)
Use to concatenate any number of strings. All the strings
have to be joined using the string on which this method is
called.

str.strip([chars])

Returns a copy of the string with leading and trailing
characters	
removed.	
If	
chars	
is	
not	
specified,	
it	
defaults	
to	

removing whitespace.

str.lstrip([chars])

Returns a copy of the string with leading characters
removed.	
If	
chars	
is	
not	
specified,	
it	
defaults	
to	
removing	

whitespace.

str.rstrip([chars])

Returns a copy of the string with trailing characters
removed.	
If	
chars	
is	
not	
specified,	
it	
defaults	
to	
removing	

whitespace.

str.isalpha() Return true if all characters in the string are alphabetic and
there is at least one character, false otherwise.

str.isalnum() Return true if all characters in the string are alphanumeric
and there is at least one character, false otherwise.

5.6.1 Creating a String in Python
Here is a single Python program that demonstrates several ways to create a
string:

Using single or double quotes

s = “Hello, World!”

s1 = ‘Hello, World!’

print(s)

print(s1)

Using the str() function

x = 123

y = 3.14

s2 = str(x)

s3 = str(y)

print(s2)

print(s3)

132 Python Programming: A Step-by-Step Guide to Learning the Language

Using string literals

s4 = “””This is a

multiline string”””

print(s4)

Using String Interpolation

name = “John”

age = 30

s5 = f”My name is {name} and I am {age} years old”

print(s5)

Using bytes and bytearray

s6 = b’hello’

s7 = bytearray(b’hello’)

print(s6)

print(s7)

This program creates five strings using different methods, first two by using
single and double quotes, next two by using str() function , one by using
string literals and last two by using bytes and bytes.

5.6.2 Accessing String Characters
Here is a single Python program that demonstrates several ways to access the
characters of a string:

Using indexing

s = “Hello, World!”

print(s[0]) # H

print(s[-1]) # !

Using slicing

print(s[2:5]) # llo

Python Native Data Types 133

Using the for loop

for c in s:

print(c)

Using the while loop

i = 0

while i < len(s):

print(s[i])

i += 1

Using the enumerate function

for index, character in enumerate(s):

print(“Index: “, index, “ Character: “, character)

This program demonstrates several ways to access the characters of a string.
The first method uses indexing to access individual characters. The second
method uses slicing to access a range of characters. The third and fourth
method uses for and while loop respectively to access all characters one by
one. The last method uses the enumerate function to access the index and
character at the same time.

Please note that string in python is immutable, which means the individual
elements of the string cannot be changed once it is created.

5.6.3 Changing or Deleting String Characters
In Python, strings are immutable, which means that once a string is created,
its characters cannot be changed or deleted. However, there are several ways
to create a new string with the desired modifications. One way to do this is to
create a new string by concatenating substrings, which can be created using
slicing and string methods such as replace(). Another way is to use string
formatting and template strings.

Here’s a single Python program that demonstrates several ways to change or
delete characters in a string:

 134 Python Programming: A Step-by-Step Guide to Learning the Language

Creating a new string by concatenating substrings

s = “Hello, World!”

new_s = s[:5] + “Python” + s[11:]

print(new_s) # “Hello, Python!”

Using the replace method

s = “Hello, World!”

new_s = s.replace(“World”, “Python”)

print(new_s) # “Hello, Python!”

Using string formatting

name = “John”

age = 30

new_s = “My name is %s and I am %d years old” % (name, age)

print(new_s) # “My name is John and I am 30 years old”

Using template strings

name = “John”

age = 30

new_s = f”My name is {name} and I am {age} years old”

print(new_s) # “My name is John and I am 30 years old”

The first method creates a new string by concatenating substrings using
slicing, which is obtained from the original string. The second method uses
the replace() method to replace a specific substring with a new one. The third
method uses string formatting to create a new string with placeholders filled
with values. The last method uses template strings, which is a new feature
introduced in Python 3.6, that uses f-strings and {} placeholders.

As you can see, while it is not possible to directly change or delete characters
in a string, you can use various methods to create new strings with the desired
modifications.

 Python Native Data Types 135

5.6.4 Python String Operations
In Python, there are several built-in operations that can be performed on
strings, such as concatenation, repetition, and comparison.

String concatenation is the process of joining two or more strings together.
This can be done using the + operator, or the join() method. String repetition
is the process of repeating a string a certain number of times. This can be
done using the * operator. String comparison is the process of comparing
two strings to see if they are equal, or if one comes before the other in
lexicographic order. This can be done using the ==, !=, >, <, >=, and <=
operators.

Here is a single Python program that demonstrates some of these string
operations:

Concatenation

s1 = “Hello”

s2 = “World”

s3 = s1 + “, “ + s2 + “!”

print(s3) # “Hello, World!”

Repetition

s4 = “Python “

s5 = s4 * 3

print(s5) # “Python Python Python “

Comparison

s6 = “Python”

s7 = “python”

print(s6 == s7) # False

print(s6 != s7) # True

print(s6 > s7) # True

print(s6 < s7) # False

Using join method

s8 = “ “.join([“Hello”,”World”])

print(s8) # “Hello World”

136 Python Programming: A Step-by-Step Guide to Learning the Language

In the above program the first example shows the concatenation of two strings
using + operator. The second example shows the repetition of a string using
* operator. The third example shows the comparison of two strings using
comparison operators like ==, !=, >, <, >=, and <=. The last example shows
the use of join method to join multiple strings with a specified delimiter. You
can use these string operations to perform various tasks such as formatting
text, generating text output, and manipulating strings in your Python programs.

5.6.4.1 Concatenation
String concatenation is the process of joining two or more strings together to
form a new string. In Python, there are several ways to concatenate strings,
such as using the + operator, the += operator, the join() method or the f-strings.

Here is a single Python program that demonstrates some of these methods:

Using the + operator

s1 = “Hello”

s2 = “World”

s3 = s1 + “ “ + s2

print(s3) # “Hello World”

Using the += operator

s4 = “Python”

s4 += “ is “

s4 += “powerful”

print(s4) # “Python is powerful”

Using the join() method

s5 = “ “.join([“Hello”,”World”])

print(s5) # “Hello World”

Using f-strings

name = “John”

age = 30
s6 = f”My name is {name} and I am {age} years old”
print(s6) # “My name is John and I am 30 years old”

Python Native Data Types 137

The first method uses the + operator to concatenate two strings. The second
method uses the += operator to concatenate strings. The third method uses
the join() method to join a list of strings with a specified delimiter. The last
method uses f-strings, which were introduced in Python 3.6 and allow you to
embed expressions inside string literals using {}.

5.6.4.2 Iteration and Membership Test
Iteration is the process of repeatedly executing a block of code for a given
number of times or until a certain condition is met. In Python, this can be
done using loops such as the for and while loops. Membership test is the
process of checking if a specific element is present in a container object such
as a list, tuple, set, or string. In Python, this can be done using the in and not

in operators.

Here is a single Python program that demonstrates iteration and membership

test using a string:

Iteration using for loop

s = “Hello, World!”

for char in s:

print(char)

Iteration using while loop

i = 0

while i < len(s):

print(s[i])

i += 1

Membership test using in and not in

s = “Hello, World!”

print(“H” in s) # True

print(“h” in s) # False

print(“Z” not in s) # True

The first example uses a for loop to iterate over the characters of a string. The
second example uses a while loop to iterate over the characters of a string,

 138 Python Programming: A Step-by-Step Guide to Learning the Language

using the string’s length to determine when to stop the loop. The last example
uses the in and not in operators to check if a specific character is present in
the string. The in operator returns True if the character is found in the string,
False otherwise. The not in operator returns True if the character is not found
in the string and False otherwise.

5.6.5 String Formatting
String formatting is the process of inserting values into a string. This can
be done using string formatting methods such as format(), f-strings and
string interpolation. These methods allow you to insert values into a string
by defining placeholders in the string and then providing the values to be
inserted.

Here is a single Python program that demonstrates different methods of string

formatting:

Using the format() method

name = “John”

age = 30

s = “My name is {} and I am {} years old”.format(name, age)

print(s) # “My name is John and I am 30 years old”

Using f-strings

name = “John”

age = 30

s = f”My name is {name} and I am {age} years old”

print(s) # “My name is John and I am 30 years old”

Using string interpolation % operator

name = “John”

age = 30

s = “My name is %s and I am %d years old” % (name, age)

print(s) # “My name is John and I am 30 years old”

The first method uses the format() method to insert values into a string

by defining placeholders in the string and then providing the values to be

Python Native Data Types 139

inserted. The second method uses f-strings, which were introduced in Python
3.6 and allow you to embed expressions inside string literals using {}. The
last method uses the % operator to perform string interpolation in older
version of python.

5.6.6 Python String Built-in Methods
In Python, strings have a variety of built-in methods that can be used to
manipulate and interact with them. Some examples of these methods include:

• upper(): Converts all characters in a string to uppercase
• lower(): Converts all characters in a string to lowercase
• replace(old, new): Replaces all occurrences of the old substring with the

new substring
• find(sub): Returns the index of the first occurrence of the substring
• count(sub): Returns the number of occurrences of the substring
• split(sep): Returns a list of substrings separated by the specified separator
• strip(): Removes leading and trailing whitespace from a string
• join(iterable): Joins all elements in an iterable(list, tuple, etc) with the

string as a separator
Here is a single Python program that demonstrates some of these methods:

s = “Hello, World!”

Using upper() method

print(s.upper()) # “HELLO, WORLD!”

Using lower() method

print(s.lower()) # “hello, world!”

Using replace() method

print(s.replace(“World”, “Python”)) # “Hello, Python!”

Using find() method
print(s.find(“World”)) # 7

Using count() method
print(s.count(“o”)) # 2

140 Python Programming: A Step-by-Step Guide to Learning the Language

Using split() method

print(s.split(“,”)) # [“Hello”, “ World!”]

Using strip() method

s = “ Hello, World! “

print(s.strip()) # “Hello, World!”

Using join() method

l = [“Hello”, “World”]

print(“, “.join(l)) # “Hello, World”

5.7 Summary
In this chapter, we covered the various native data types in Python in depth.
These data types include numbers, strings, lists, tuples, sets, and dictionaries,
and they provide different ways to store data in Python. We learned about
the characteristics and uses of each data type, as well as the methods and
functions associated with them. We also provided programming examples to
illustrate the usage of each data type and its related methods and functions.
Overall, this chapter aimed to give a comprehensive understanding of the
different data types available in Python and how they can be used to store
and manipulate data.

Review Questions
1. What are native data types in Python?
2. Can you explain the Python Number data type?
3. What is a List in Python and how is it used?
4. Can you describe the Python Tuple data type and its use?
5. How is a Set used in Python and what are its properties?
6. What is a Dictionary in Python and how is it different from a List or

Tuple?
7. Can you give an example of how to create and use a Python String?
8. How are string operations, such as concatenation and slicing, performed

in Python?

Python Native Data Types 141

9. Can you explain the difference between single and double quotes in
Python String definitions?

10. How can you format a Python String using the format() method?
11. Which of the following is a Python native data type that represents a

sequence of characters?
(a) Number
(b) List
(c) String
(d) Dictionary

12. Which of the following is a Python native data type that represents an
unordered collection of unique elements?
(a) List
(b) Tuple
(c) Set
(d) Dictionary

https://taylorandfrancis.com

6

Python Functions

Highlights
l Python functions

l Types of functions

l Advantages of functions

l Python anonymous functions

l Pass by value vs. Pass by reference

l Recursion

Python functions are a fundamental concept in programming that allow you
to encapsulate and reuse code. Functions in Python are blocks of code that
perform a specific task and can be called multiple times throughout a program.
They can take input parameters, return values, and modify global variables.
Functions are defined using the “def” keyword, followed by a function name
and any necessary parameters, and then the function body. To use a function,
you simply call it by its name, passing any necessary arguments. Python
functions can greatly simplify complex programs by breaking them down
into smaller, reusable pieces of code.

6.1 Python Functions
In Python, a function is a block of code that performs a specific task and can
be reused throughout your program. Functions are defined using the “def”
keyword, followed by the function name and a set of parentheses for any

144 Python Programming: A Step-by-Step Guide to Learning the Language

input parameters. For example, you can define a function called “greet” that
takes in a parameter called “name” and prints out a greeting message: “Hello,
name!”. Functions can also return a value using the “return” statement, for
example, a function called “add” that takes in two parameters “a” and “b”
and returns their sum. Functions are called by their name, followed by the
parentheses and any necessary input arguments. Functions are useful for
organizing and modularizing your code, making it easier to read, understand,
and maintain. They also allow you to reuse the same code multiple times,
without having to write it over and over again.

6.2 Advantages of Python
There are several advantages to using Python as a programming language:

1. Easy to Learn and Read: Python has a simple, easy-to-learn syntax
which makes it a great language for beginners. It also uses indentation
to indicate code blocks, making it more readable than other languages.

2. Large
and Active Community: Python has a large and active
community, which means that there are many resources available for
learning and troubleshooting. Additionally, the community continually
develops and maintains a wide range of libraries and frameworks, which
makes development faster and more efficient.

3. Versatile and Cross-Platform: Python can be used for a wide range of
tasks, including web development, scientific computing, data analysis,
artificial intelligence, and more. It also runs on a variety of platforms,
including Windows, Mac, and Linux.

4. Plenty of Libraries and Frameworks: Python has a wealth of libraries
and frameworks available, including NumPy and SciPy for scientific
computing, Pygame for game development, and Django and Flask for
web development.

5. Good for
 Prototyping: Python’s easy-to-read syntax and short
development cycle make it a great choice for prototyping and
experimenting with new ideas.

6. High-Demand:
 Python is one of the most popular programming
languages, in demand by many industries, such as data science, machine
learning, artificial intelligence, and web development.

Python Functions 145

6.3 Types of Functions
A function in Python is a block of reusable code that performs a specific
task. Functions can accept input (referred to as arguments or parameters) and
return output. Functions are defined using the def keyword, and are called
using their name followed by parentheses, with any input passed within the
parentheses.

There are two types of functions in Python:

1. Python User-defined Functions

2. Python Built-in Functions

3. Lambda Function

4. Recursive Function

1. Built-in functions: These are the functions that are already available
in Python and can be used without importing any modules. Examples
include print(), len(), and str().

2. User-defined functions: These are the functions that are defined by the
user and can be reused throughout the program. These can take inputs
and can return values.

3. Anonymous or lambda functions: These are the functions that are small
and single-expression functions that are defined without a name, using
the “lambda” keyword. These functions are useful for simple operations
that can be defined in a single line of code.

4. Recursive Function: A function that calls itself is said to be recursive.
In Python, recursion is a technique where a function calls itself in order
to solve a problem.

6.4 Built-in Functions
Built-in functions are functions that are already available in Python and
can be used without importing any modules. These functions are part of the
Python standard library and are always available for use in your code. They
can be used to perform a wide variety of tasks, such as converting data types,
manipulating strings, and working with mathematical operations.Here’s a
table of some common built-in functions in Python:

     

146 Python Programming: A Step-by-Step Guide to Learning the Language

Table 6.1 : Python Built in Functions

Function Description

print() Prints or displays text or data on the screen

input() Gets input from the user

len() Gets the length of a list, string, or other data structure

type() Gets the data type of a variable or expression

int() Converts a value to an integer

float()
 Converts	
a	
value	
to	
a	
floating-point	
number

str() Converts a value to a string

list() Converts a value to a list

dict() Converts a value to a dictionary

tuple() Converts a value to a tuple

6.5  Python
User
Defined
Functions

User-defined functions are functions that are created and defined by the user,
as opposed to being built-in to the programming language or software system.
These functions can be used to perform specific tasks or operations, and can
be reused throughout a program or project.

Here’s a table of some characteristics of user-defined functions in Python:

Table 6.2: Characteristics	of	user-defined	function

Characteristics Description

Definition
 User-defined	
functions	
are	
defined	
using	
the	
def	
keyword,	
followed	

by the function name and a set of parentheses.

Parameters User-defined	
functions	
can	
accept	
zero	
or	
more	
input	
parameters,	

which	
are	
specified	
within	
the	
parentheses.

Return value User-defined	
functions	
can	
return	
zero	
or	
one	
value	
using	
the	

return	
keyword.

Scope User-defined	
functions	
have	
their	
own	
scope	
and	
do	
not	
affect	
the	

global scope or other functions.

Reusability User-defined	
functions	
can	
be	
called	
multiple	
times	
within	
a	
program	

or	
project,	
making	
the	
code	
more	
modular	
and	
reusable.

Naming User-defined	
functions	
should	
be	
given	
a	
name	
that	
describes	
its	

functionality.

 

Python Functions 147

6.5.1  Function
Definition

Function definition refers to the process of creating and specifying a function’s
code, its name, input parameters, and return value. In most programming
languages, this is done using a specific syntax, such as the def keyword in
Python. A user-defined function in Python is defined using the def keyword,
followed by the function name, a set of parentheses (which may include input
parameters), and a colon. The code that makes up the function’s operations is
then indented and placed beneath the definition.

Syntax:

def function_name(): //Definition of a function

//Body of the function starts from here

For example:

def add_numbers(a,b):

print(“welcome!”)

return a+b

So body of the function is created.

6.5.2 Function Call
A function call is the process of invoking or executing a function. In other
words, it’s the process of telling the program to run the code inside a function.
When a function is defined, it’s created but not executed. It’s only when the
function is called that its code is executed. In order to call a function, you
need to use the function’s name followed by a set of parentheses, and inside
these parentheses, you can pass any required parameters.

To call a function we simply type the function name with/without parameters
as per functions definition..

Syntax:

def function_name(): //Definition of a function

//Body of the function starts from here

function_name() //Calling a function

Here’s an example of a user-defined function in Python that takes two input
parameters, a and b, and returns their sum:

148 Python Programming: A Step-by-Step Guide to Learning the Language

Code 6.1: A program to add two numbers

def add_numbers(a, b):
return a + b

result = add_numbers(3, 4)
print(result) # Output: 7

In this example, the function is named add_numbers and takes two input
parameters a and b. The function’s code is a single line that calculates the
sum of a and b using the + operator and returns the result using the return
keyword. When the function is called with the arguments 3 and 4, the return
value is 7.

It’s important to note that the same function can be called multiple times
with different parameters, and it will execute its code each time, returning a
different result based on the input values.

6.5.3 Types of Function Arguments(Parameters)
Function arguments, also known as parameters, are values that are passed to
a function when it is called. These values are then used by the function to
perform its designated task. In programming, there are several types of function
arguments that can be used, each with their own specific characteristics and
use cases. Understanding the different types of function arguments can help
developers write more flexible and efficient code.

There are several types of function arguments (also known as parameters) in
programming:

1. Function with No Arguments:

A function with no arguments is a
function that does not require any input values to be passed to it when it
is called.

2. Function with Required Arguments: A function with required
arguments is a function that requires specific input values to be passed
to it when it is called. If these required arguments are not provided, the
function will not be able to run or will raise an error.

3. Function with Arbitrary Length Arguments: A function with arbitrary
length arguments is a function that can accept a variable number of input
values. These values can be passed to the function using the *args or
**kwargs notation.

Python Functions 149

4. Function with Keyword Based Arguments: A function with keyword-
based arguments is a function that accepts input values that are passed to
it by explicitly specifying the argument name and its value. This allows
for more flexibility and readability in function calls.

5. Function with Default Arguments: A function with default arguments
is a function that assigns default values to certain input parameters. If a
value for these parameters is not provided when the function is called,
the default value will be used.

6. Python Anonymous Functions: Anonymous functions are functions that
are defined without a name. They are also known as lambda functions
and can be used in situations where a function is required but a named
function is not necessary. Anonymous functions can be defined using the
lambda keyword in Python.

6.5.3.1 Function with No Arguments
A function with no arguments is a function that does not require any input
values to be passed to it when it is called. Such functions can still perform
useful operations, such as printing text, performing calculations, or returning
a value. In Python, a function with no arguments can be defined using the def
keyword, followed by the function name, a set of parentheses, and a colon.
For example:

Code 6.2: Illustrate the function with no arguments.

def greet():

print(“Hello, World!”)

greet() # Calling the function

In this example, the greet() function is defined using the def keyword, followed
by the function name and a set of parentheses. There are no arguments defined
within the parentheses, indicating that the function does not require any input
values. The function simply prints a greeting message to the console when it
is called. When the function is called by using the function name followed by
parentheses, greet(), the function runs and prints “Hello, World!” as a output.

This example shows that a function with no arguments can still perform
useful operations, such as printing a message or performing calculations.

150 Python Programming: A Step-by-Step Guide to Learning the Language

6.5.3.2 Function with Required Arguments
A function with required arguments is a function that requires specific input
values to be passed to it when it is called. These input values are defined
as parameters within the function definition and are used by the function to
perform its designated task. If these required arguments are not provided, the
function will not be able to run or will raise an error. In Python, a function
with required arguments can be defined using the def keyword, followed by
the function name, a set of parentheses containing the required argument
names, and a colon. For example:

Code 6.3: Illustrate the function with required arguments.

def greet(name):

print(f”Hello, {name}!”)

greet(“John”) # Calling the function with required argument

In this example, the greet() function is defined using the def keyword,
followed by the function name and a set of parentheses containing one
required argument named name. This argument is used to customize the
greeting message that is printed to the console. When the function is called
by using the function name followed by parentheses containing the required
argument, greet(“John”), the function runs and replaces the name placeholder
in the greeting message with the provided value “John” , then it prints “Hello,
John!” as a output.

Hello, John!

6.5.3.3 Function with Arbitrary Length Arguments
A function with arbitrary length arguments is a function that can accept a
variable number of input values. These values can be passed to the function
using the *args or **kwargs notation. In Python, *args allows a function
to accept any number of positional arguments, while **kwargs allows a
function to accept any number of keyword arguments. Here is an example of
a function with arbitrary length arguments in Python:

Code 6.4:Illustrate the function with arbitrary length arguments.

Python Functions 151

def add_numbers(*numbers):
result = 0
for number in numbers:

result += number
return result

result = add_numbers(1,2,3,4,5)
print(result)

In this example, the add_numbers() function is defined using the def keyword,
followed by the function name and a set of parentheses containing *numbers.
The * before the argument name numbers indicates that the function can
accept any number of positional arguments. The function then iterates over
the numbers passed as arguments, adding them together and storing the result
in a variable. Finally, the function returns the result. When the function is
called by using the function name followed by parentheses containing the
arbitrary length arguments, add_numbers(1,2,3,4,5), the function runs and
adds all the numbers passed as arguments, then it prints 15 as a output.

It’s also possible to use **kwargs to accept any number of keyword arguments,
in this case the function would look like this:

def greet(**kwargs):
print(f”Hello, {kwargs[‘name’]}!”)

greet(name=”John”)

In this example, the function is defined to accept any number of keyword
arguments using **kwargs. The function then accesses the value of the “name”
keyword argument and uses it to create a personalized greeting message.

6.5.3.4 Function with Keyword Based Arguments
A function with keyword-based arguments is a function that accepts input
values that are passed to it by explicitly specifying the argument name and
its value. This allows for more flexibility and readability in function calls, as
it allows the developer to specify the arguments in any order, as well as to
specify only the arguments that are relevant for the current call. In Python,
keyword arguments are defined by including the argument name followed by
an equal sign(=) and its value in the function call. Here is an example of a
function with keyword-based arguments in Python:

152 Python Programming: A Step-by-Step Guide to Learning the Language

Code 6.5: Illustrate the function with keyword arguments.

def greet(name, age):
print(f”Hello, {name}. You are {age} years old.”)

greet(age=25, name=”John”)

In this example, the greet() function is defined using the def keyword,
followed by the function name and a set of parentheses containing two
arguments name and age.

When the function is called by using the function name followed by parentheses
containing the keyword-based arguments, greet(age=25, name=”John”), the
function runs and replaces the name and age placeholders in the greeting
message with the provided values “John” and 25, respectively, then it prints
“Hello, John. You are 25 years old.” as a output.

It’s also possible to specify some of the arguments as keyword arguments and
others as positional arguments, for example:

greet(“John”, age=25)

This will also run the same way and prints the same output as before.

6.5.3.5 Function with Default Arguments
A function with default arguments is a function that assigns default values
to certain input parameters. If a value for these parameters is not provided
when the function is called, the default value will be used. In Python, default
arguments are defined by including the argument name followed by an equal

sign(=) and its default value in the function definition.

Here is an example of a function with default arguments in Python:

Code 6.6: Illustrate the function with default arguments.

def greet(name, age=25):
print(f”Hello, {name}. You are {age} years old.”)

greet(“John”)

In this example, the greet() function is defined using the def keyword,
followed by the function name and a set of parentheses containing two
arguments name and age. The age argument has a default value of 25. When
the function is called by using the function name followed by parentheses

Python Functions 153

containing the only required argument, greet(“John”), the function runs and
uses the default value of 25 for the age argument, then it prints “Hello, John.
You are 25 years old.” as a output.

6.6 Python Anonymous Functions
In Python, anonymous functions are functions that are defined without a name.
They are also known as lambda functions and can be used in situations where
a function is required but a named function is not necessary. Anonymous
functions can be defined using the lambda keyword in Python.

Syntax:

lambda arguments: expression

The lambda keyword is used to define an anonymous functions in Python.
Usually, such a function is meant for one-time use.

This function can have any number of arguments but only one expression,

which is evaluated and returned. One is free to use lambda functions wherever

function objects are required.

Here is an example of an anonymous function in Python:

Code 6.7 : Illustrate the use of lambda function

x = lambda a : a + 10

print(x(5))

In this example, the anonymous function is defined using the lambda
keyword, followed by the argument(s) and the function’s expression. The
function takes one argument a and returns the value of a plus 10. When the
function is called by providing the argument 5 as input, x(5), the function
runs and returns the value 5+10=15 as output.

Here is an example of an anonymous function with multiple arguments:

x = lambda a,b,c : a + b + c

print(x(2,5,8))

Lambda functions are commonly used when a small, one-time-use function
is required. They can also be used as a function argument, for example, as
a sorting key function, a filter function, a map function, and so on. It’s also
possible to use lambda functions in combination with other built-in functions
such as map, filter, and reduce.

154 Python Programming: A Step-by-Step Guide to Learning the Language

numbers = [1, 2, 3, 4, 5]

squared_numbers = map(lambda x: x**2, numbers)

print(list(squared_numbers)) # Output: [1, 4, 9, 16, 25]

6.6.1 Characteristics of Lambda Form
A lambda form, also known as a lambda function, is a way to create
small, anonymous functions in Python. These functions are defined using
the “lambda” keyword, followed by a list of arguments, a colon, and the
function’s expression. Here is an example of a simple lambda form that takes
in one argument (x) and returns its square:

square = lambda x: x*x

The main characteristics of lambda forms are:

1. Anonymous: Lambda forms do not have a name, and they cannot be
referenced by name.

2. Small: Lambda forms are usually only one line of code, and they are
typically used for simple operations.

3. Function objects: Lambda forms can be used wherever a function object
is required, such as being passed as an argument to another function.

4. Assignable: Lambda forms can be assigned to a variable, allowing them
to be passed as an argument or returned from a function.

5. Functional programming: Lambda forms can be used with the map(),
filter() and reduce() functions for functional programming.

6. Single expression:
 Lambda forms are limited to a single expression,
unlike regular functions which can have multiple statements.

7. No return statement: Lambda forms do not have a return statement,
and whatever is after the colon is returned.

Please note that, while lambda forms are useful in certain cases, they should
be used with caution. They can make code harder to read and understand,
especially if they are used extensively or in complex ways.

6.7 Pass by Value vs. Pass by Reference
In Python, all variables are passed by reference. This means that when a
variable is passed as an argument to a function, the function receives the
memory address of the variable, not a copy of its value. Any changes made to

Python Functions 155

the variable within the function will affect the original variable. For example,
if you pass a list to a function and modify the list within the function, the
original list will be modified as well.

However, when a primitive value such as an integer or string is passed to a

function, the function receives a reference to the object containing the value
rather than the value itself. This means that the function can change the
attributes of the object, but the value of the primitive can not be changed.
For example, if you pass an integer toInside the function, x is: 11

Outside the function, x is: 10

 a function and change the value of the integer within the function, the
original integer will not be changed.

6.7.1 Pass by Value
In Python, all variables are passed by reference, which means that when a
variable is passed as an argument to a function, the function receives the
memory address of the variable, not a copy of its value. Any changes made
to the variable within the function will affect the original variable. However,
when a primitive value such as an integer or string is passed to a function,
the function receives a reference to the object containing the value rather than
the value itself. This means that the function can change the attributes of the
object, but the value of the primitive can not be changed.

Here is an example of passing an integer by reference in Python:

def increment(x):
x += 1
print(“Inside the function, x is:”, x)

x = 10
increment(x)
print(“Outside the function, x is:”, x)

This program will output:

Inside the function, x is: 11

Outside the function, x is: 10

As you can see, the function modifies the value of the variable x within the
function, but this change does not affect the original variable x outside the
function. This is because the variable x is passed by reference, but the value
of x can not be modified.

156 Python Programming: A Step-by-Step Guide to Learning the Language

6.7.2 Pass by Object Reference
In Python, all variables are passed by object reference, which means that
when a variable is passed as an argument to a function, the function receives
the memory address of the object, not a copy of its value. Any changes made
to the object within the function will affect the original object. For example,
if you pass a list to a function and modify the list within the function, the
original list will be modified as well.

Here is an example of passing a list by object reference in Python:

def increment(lst):
lst[0] += 1
print(“Inside the function, the list is:”, lst)

lst = [10, 20, 30]
increment(lst)
print(“Outside the function, the list is:”, lst)

This program will output:

Inside the function, the list is: [11, 20, 30]

Outside the function, the list is: [11, 20, 30]

As you can see, the function modifies the value of the first element of the list
lst within the function, and this change affects the original list lst outside the
function as well. This is because the list lst is passed by object reference, and
the object can be modified.
It’s also worth noting that in python, some types are mutable and some are
immutable, for example, lists are mutable and tuples are immutable.

6.8 Recursion
In computer science, recursion is a method of solving a problem by breaking
it down into smaller, identical problems. A function that calls itself is said to
be recursive. In Python, recursion is a technique where a function calls itself
in order to solve a problem.
Recursion is a powerful problem-solving technique that can be used to solve
many types of problems, such as mathematical problems, tree traversals, and
more. The key to using recursion effectively is to find the base case, which
is the simplest version of the problem that can be solved directly, and the
recursive case, which is the problem broken down into smaller identical parts.
Here’s an example of a simple recursive function in Python:

Python Functions 157

Code 6.8: Illustrator the concept of recursion in python.

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)
print(factorial(5)) # 120

This function calculates the factorial of a number. The base case is when
n is 0, and the function returns 1. In the recursive case, the function calls
itself with the argument n-1, which is a smaller version of the problem. The
function will continue to call itself with smaller and smaller arguments until
the base case is reached and the function can return a value.

Recursion can be a powerful and elegant way to solve problems, but it can
also be hard to understand, and it can consume a lot of memory if not used
carefully, as each call creates a new call stack frame, and if the recursion
depth is large it can cause a stack overflow error.

6.8.1 Advantages of Recursion
Recursion is a powerful problem-solving technique that can be used to solve
many types of problems in Python, and it has several advantages:

1. Clarity and Simplicity:
 Recursive solutions can be simple and easy
to understand, especially for problems that have a natural recursive
structure.

2. Conciseness: Recursive solutions can be more concise than their iterative
counterparts, as they eliminate the need for explicit looping and counter
variables.

3. Reusability:
 Recursive functions can be reused for solving similar
problems with different inputs, making the code more modular and easy
to maintain.

4. Elegance: Recursive solutions can be elegant and visually pleasing, as
they capture the natural structure of the problem and express it in a clear
and concise way.

5. Flexibility: Recursive solutions can be adapted and extended to solve
more complex problems, as they can be combined with other techniques,
such as dynamic programming and memoization, to optimize their
performance.

158 Python Programming: A Step-by-Step Guide to Learning the Language

It’s worth noting that recursion has also some drawbacks, like consuming
a lot of memory and the risk of stack overflow errors, and it might not
always be the best solution for a given problem, it’s important to consider
the complexity and performance of the algorithm before choosing recursion
as the solution.

6.8.2 Disadvantages of Recursion
Recursion is a programming technique where a function calls itself in order to
solve a problem. This technique is used to solve problems that can be broken
down into smaller, similar problems. In Python, recursion is implemented
using function calls.

Disadvantages of recursion in python are:

1. It can be more difficult to understand and debug compared to iterative
solutions.

2. It can consume a large amount of memory due to the call stack.
3. The risk of stack overflow error if the recursion goes too deep.
4. It can be less efficient as compared to iterative solution due to the

overhead of function calls.
5. Recursive solutions may be less readable and harder to maintain than

their iterative counterparts.
6. A problem that can be solved using a loop may use unnecessary additional

function calls with recursion.
7. Recursive solutions may not always be the best choice for solving a

problem and may result in slower performance.

6.9 Scope and Lifetime of Variables
In Python, a variable’s scope refers to the portion of the program where the
variable can be accessed. The lifetime of a variable refers to the period of
time that a variable exists and retains its value.

There are two types of scope in Python:

1. Local scope: A variable defined within a function or a block of code has
a local scope and can only be accessed within that function or block.

2. Global scope: A variable defined outside of any function or block has a
global scope and can be accessed throughout the entire program.

Python Functions 159

The lifetime of a variable in Python depends on where the variable is defined:

Variables defined within a function have a lifetime that lasts only as long as
the function call. Once the function call is finished, the variable is destroyed.

Variables defined outside of any function have a lifetime that lasts as long
as the program is running. Once the program exits, the variable is destroyed.

It’s important to note that in python, you can use global keyword inside
function to make a variable global, otherwise it will be treated as local variable

6.10 Summary
In this chapter, we explored the concept of functions in the Python
programming language. We covered both built-in functions and user-defined
functions, providing a comprehensive list of built-in functions and detailing
the various types of user-defined functions with examples. We also delved
into the topic of anonymous functions, which are created using the lambda
function, and discussed the concepts of pass by value and pass by object
reference. Additionally, we covered the topic of recursion, which is a powerful
tool for solving certain types of problems. Finally, we discussed the scope
and lifetime of variables and how they relate to functions.

Review Questions
1. What is a function in Python?

2. How do you define a function in Python?

3. What is the difference between a built-in function and a user-defined
function in Python?

4. What is a return statement in Python functions and why is it important?

5. What is the scope of a variable defined inside a function in Python?

6. What is a default argument in Python functions and how is it used?

7. What is a lambda function in Python?

8. What is recursion in Python and how is it implemented?

9. What is a function decorator in Python?

10. How can you pass a function as an argument to another function in
Python?

160 Python Programming: A Step-by-Step Guide to Learning the Language

11. Which of the following is not a type of function in Python?
(a) Built-in functions
(b) User-defined functions
(c) Anonymous functions
(d) Binary functions

12. Which of the following describes how Python passes arguments to a
function?
(a) Pass by value
(b) Pass by reference
(c) Pass by object reference
(d) Pass by copy

7

Python Modules

Highlights
l Python Modules

l Creating a Module

l Importing Module

l Standard Modules

l Python Packages

A module in Python is a file containing Python definitions and statements.
The file name is the module name with the suffix .py added. Modules
can define functions, classes, and variables, and can also include
runnable code. The import statement is used to include a module in a
Python script and access the definitions and statements defined within
the module. Additionally, specific functions or variables can be imported
from a module using the from ... import ... statement. Aliases can also be
assigned to modules or functions using the as keyword when importing.

Modules can also be included in Python’s built-in library, such as sys
and os, which provide access to certain variables and functions used
or maintained by the interpreter and operating system functionality
respectively.

162 Python Programming: A Step-by-Step Guide to Learning the Language

7.1 Need of Module
Modules are a fundamental concept in programming and are used to organize
and reuse code. They are a way to divide a large program into smaller and
more manageable parts. By breaking code into modules, you can make it
easier to understand, maintain, and update. Modules provide a way to
organize related code and variables into a separate namespace, which helps
to avoid naming conflicts and makes your code more organized and readable.
Additionally, modules allow you to reuse code across multiple projects, saving
time and effort. Modules also make it easy to use the built-in and third-party
functionality in Python. Python has a large library of built-in modules that
provide a wide range of functionality, and a large community of developers
who have created a wide variety of modules that can be imported and used
in your code. This makes it easy to accomplish certain tasks, such as machine
learning, web scraping, and more.

Modules in Python serve several purposes, including:

1. Code Reusability:

Modules allow you to organize your code into
reusable and self-contained blocks. This means that you can write a
module once and use it in multiple projects, saving time and effort.

2. Namespace:

Modules provide a way to organize related code and
variables into a separate namespace. This helps to avoid naming conflicts
and makes your code more organized and readable.

3. Code Maintenance: Modules help to separate different parts of your
code and make it easier to maintain. You can make changes to a module
without having to worry about affecting other parts of your code.

4. Standard Library: Python has a large library of built-in modules that
provide a wide range of functionality, including file handling, string
manipulation, mathematical functions, and more. These modules can be
imported and used in your code, saving time and effort in developing
your own solutions.

5. Third-party Libraries: Python has a large community of developers
who have created a wide variety of modules that can be imported and
used in your code. These libraries provide additional functionality and
can make it easier to accomplish certain tasks, such as machine learning,
web scraping, and more.

In summary, modules help you to organize your code, increase code
reusability, and make it easy to use the built-in and third-party functionality.

 

Python Modules 163

7.2  Module
Definition

A module in Python is a file containing Python definitions and statements.
The file name is the module name with the suffix .py added. For example, a
file named “example.py” would be considered a module in Python. A module
can contain various types of definitions such as functions, classes, and
variables, and can also include runnable code. Functions and classes defined
in a module can be called and instantiated by other parts of the program.
Variables defined in a module can be accessed and modified by other parts
of the program.

You can create a module by creating a new .py file and adding your Python
code to it. Once the module is created, it can be imported into other Python
scripts using the import statement and the definitions and statements within
the module can be accessed using the dot notation. For example, if you have
a module called example.py that defines a function called example_function,
you can import the module and call the function like this:

import example

example.example_function()

It’s worth noting that, python also have a mechanism of package which is a
collection of related modules. With packages, you can organize your modules
into a single namespace, making it easy to keep related modules together and
organized.

7.3 Creating a Module
Creating a module in Python is as simple as creating a new .py file and
adding your Python code to it. Here are the basic steps to create a module:

1. Open a text editor or an IDE, such as IDLE or PyCharm.
2. Create a new file and save it with a .py file extension. The name of the

file will be the name of the module. For example, if you want to create
a module called “example”, you would save the file as “example.py”.

3. Add your Python code to the file. You can define functions, classes, and
variables in the module. For example:
Code 7.1: Illustrating the concept of module in python

def example_function():

print(“This is an example function.”)

164 Python Programming: A Step-by-Step Guide to Learning the Language

class ExampleClass:

pass

example_variable = “This is an example variable.”

4. Save the file.
To use the module in another Python script, you need to import it using
the import statement. For example:

import example
example.example_function()

Once the module is imported, you can access the functions, classes and
variables that are defined inside that module, using the dot notation.
It’s also worth noting that, if you want to make some of the functions,
classes or variables defined in the module to be accessible by importing
the module directly, you can use the __all__ variable in the module.

__all__ = [“example_function”, “ExampleClass”]

This will make only the example_function and ExampleClass available when
importing the module directly.

7.4 Importing Module in the Interpreter
In Python, you can import a module using the “import” keyword. For example,
to import the “math” module, you would use the following command:

import math

Once the module is imported, you can access its functions and variables
using the dot notation. For example, you can use the “math.sqrt()” function
to find the square root of a number.

Code 7.2: A program to find the square root of a number.

import math

print(math.sqrt(16)) # Output: 4.0

You can also use the “from” keyword to import specific functions or variables
from a module. For example, to import only the “sqrt” function from the
“math” module, you would use the following command:

from math import sqrt

print(sqrt(16)) # Output: 4.0

Python Modules 165

You can also use the “as” keyword to give a module a different name when
importing it. For example, to import the “math” module as “m”, you would
use the following command:

import math as m

print(m.sqrt(16)) # Output: 4.0

7.5 Importing Module in the Another Script
To import a module in another script in Python, use the import statement
followed by the name of the module you wish to import. For example, if you
want to import the math module, you would use the following statement:

import math

Once the module is imported, you can use its functions and variables by
referencing them with the module name as a prefix. For example, you can use
the math.sqrt() function to calculate the square root of a number.

import math

x = math.sqrt(16)

print(x)

You can also import specific functions or variables from a module using the
from keyword, followed by the name of the module, and then the name of
the function or variable you wish to import. For example:

Code 7.3: Illustrate the use of from keyword to import a module.

from math import sqrt

x = sqrt(16)

print(x)

This can be useful if you only need to use a small number of functions or
variables from a module and do not want to have to use the module name as
a prefix every time you use them.

7.6 Importing Modules
In Python, modules are libraries of pre-written code that you can use in your
own programs. To use a module in a Python script, you need to import it
using the import statement.

166 Python Programming: A Step-by-Step Guide to Learning the Language

We can load module in python using two ways:

• The import statement
• The from-import statement

For example, to import the math module, you would use the following
command:

import math

This makes all of the functions and variables defined in the math module
available for use in your script. Once a module is imported, you can call its
functions by prefixing the function name with the name of the module. For
example:

import math

x = math.sqrt(16)

print(x)

This would output the square root of 16, which is 4.0.

You can also import specific variables or functions from a module using the

from keyword. For example, to import only the sqrt function from the math

module, you would use the following command:

from math import sqrt

x = sqrt(16)

print(x)

This would also output 4.0.

7.7 Search Path of Module
In Python, when you import a module, the interpreter searches for it in a
list of directories called the “module search path.” The search path is stored
in the sys.path variable, which is a list of strings. By default, the search
path includes the directory containing the script being run, as well as several
standard library directories and the site-packages directory of the current
Python installation.

You can see the current module search path by importing the sys module and
printing the value of sys.path. For example:

Code:7.5 : Illustrate the concept of serach path by importing the sys
module.

Python Modules 167

import sys

print(sys.path)

You can also add new directories to the module search path by modifying the
sys.path variable. For example, to add a directory called my_modules to the
search path, you would use the following command:

import sys

sys.path.append(“my_modules”)

This would allow you to import modules from the my_modules directory as
if they were part of the standard library. It’s also worth noting that you can
use PYTHONPATH environment variable to specify additional directories to
be searched for modules.

It’s important to keep in mind that modifying the module search path can
make your code less portable, as the modules you import may not be available
on other systems or in other environments.

7.8 Module Reloading
In Python, when you import a module, the interpreter caches the module’s
code in memory. This means that if you make changes to the module’s code
and then re-import it, the changes will not be reflected in your script unless
you explicitly reload the module. You can reload a module using the importlib.
reload() function, which is part of the importlib module. This function takes
a single argument, which is the module you want to reload. For example, to
reload the math module, you would use the following command:

Code:7.6 : Illustrate the concept of reloading a module in python.

import importlib

importlib.reload(math)

It’s important to note that reload() function only available in python3.4 and
above. In python 2, you can use reload() function from imp module.

from imp import reload

reload(math)

It’s worth noting that reloading a module can cause problems if the module’s
code has changed in such a way that it is no longer compatible with the code
that is using it. It’s always a good idea to test your code thoroughly after
reloading a module to make sure that everything is still working as expected.

168 Python Programming: A Step-by-Step Guide to Learning the Language

Additionally, it’s not necessary to reload a module when you are developing
and testing your code. Python interpreter automatically reloads the module
when you run the code again.

7.9 The dir() Function
The dir() function in Python is used to find out the names of all attributes
and methods associated with an object. It takes an object as its argument and
returns a list of strings that contain the names of the attributes and methods
of the object. For example, if you call dir(str), it will return a list of all the
attributes and methods that can be used with strings. If you call dir() without
any arguments, it returns a list of names in the current local scope or global
scope.

The syntax of the dir() function is as follows:

dir([object])

Where object is an optional argument that specifies the object whose attributes
and methods you want to display. If no argument is passed, dir() will display
the names in the current local or global scope.

Here is an example of using dir() to display the attributes and methods of a
list object:

>>> my_list = [1, 2, 3]

>>> dir(my_list)

[‘__add__’, ‘__class__’, ‘__contains__’, ‘__delattr__’, ‘__delitem__’, ‘__

dir__’, ‘__doc__’, ‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’,

‘__getitem__’, ‘__gt__’, ‘__hash__’, ‘__iadd__’, ‘__imul__’, ‘__init__’,

‘__init_subclass__’, ‘__iter__’, ‘__le__’, ‘__len__’, ‘__lt__’, ‘__mul__’,

‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’, ‘__

reversed__’, ‘__rmul__’, ‘__setattr__’, ‘__setitem__’, ‘__sizeof__’, ‘__

str__’, ‘__subclasshook__’, ‘append’, ‘clear’, ‘copy’, ‘count’, ‘extend’,

‘index’, ‘insert’, ‘pop’, ‘remove’, ‘reverse’, ‘sort’]

7.10 Standard Modules
The Python Standard Library is a collection of modules that are included with
the Python programming language. These modules provide a wide range of
functionality and are designed to be easy to use and efficient. They are written
in Python and are available for use in any Python program, without the need

Python Modules 169

for additional installation. The Standard Library is organized into several sub-
categories, such as built-in functions, data types, files and directories, internet
and protocols, and many more.

Here is a table that provides a brief introduction to some of the most commonly
used standard modules in Python:

Table 7.1: Standard modules in Python

Module Descriptionjson

os Provides a way to interact with the operating system and perform
tasks	
such	
as	
navigating	
the	
file	
system,	
manipulating	
files	
and	

directories,	
and	
interacting	
with	
environment	
variables.

sys Provides	
access	
to	
interpreter-specific	
functions	
and	
variables,	
such	

as	
the	
command-line	
arguments,	
the	
interpreter’s	
version	
and	
build	

information,	
and	
the	
current	
working	
directory.

math Provides	
mathematical	
functions	
and	
constants,	
such	
as	
trigonometric	

functions,	
logarithmic	
functions,	
and	
the	
mathematical	
constant	
pi.

random Provides functions to generate pseudo-random numbers and perform
random	
sampling	
from	
different	
distributions.

time Provides	
functions	
to	
handle	
time,	
including	
the	
ability	
to	
get	
the	
current	

time,	
sleep,	
and	
convert	
between	
different	
time	
representations.

re Provides	
regular	
expression	
matching	
operations,	
including	
functions	

to	
search	
for	
patterns	
in	
strings,	
split	
strings	
based	
on	
a	
pattern,	
and	

replace	
text	
based	
on	
a	
pattern.

json Provides	
functions	
to	
encode	
and	
decode	
JSON	
data.

datetime Provides	
classes	
for	
working	
with	
dates	
and	
times,	
including	
the	

ability	
to	
perform	
arithmetic	
with	
dates	
and	
times,	
and	
format	
dates	

and	
times	
as	
strings.

urllib Provides	
functions	
to	
open	
URLs,	
including	
functions	
to	
retrieve	
data	

from	
the	
web,	
send	
data	
to	
the	
web,	
and	
handle	
cookies.

collections Provides	
alternatives	
to	
built-in	
types	
that	
can	
be	
more	
efficient	
in	

certain	
cases,	
such	
as	
ordered	
dictionaries	
and	
defaultdicts.

There are many more modules available in the Standard Library, and you can
find more information about them in the Python documentation.

7.11 Python Packages
Python packages are collections of modules that provide additional
functionality to the Python programming language. These modules can be
imported into a Python script and used to perform specific tasks. Some
popular Python packages include NumPy for scientific computing, Pandas
for data manipulation, and Matplotlib for data visualization.

170 Python Programming: A Step-by-Step Guide to Learning the Language

To use a package in your Python script, you first need to install it. The most
common way to install a package is using pip, which is a package manager for
Python. To install a package using pip, you can use the following command:

pip install package_name

Once a package is installed, you can import it into your script using the
import statement. Here’s an example of importing the NumPy package:

import numpy as np

In the above example numpy is the package name and np is the alias which
we are giving to the package so that we don’t have to write numpy everytime,
instead we can use np.

Once a package is imported, you can use its functions and methods to perform
various tasks. Here’s an example of using the NumPy package to create an
array:

Code: 7.7: Code:7.5 : Illustrate the concept of packages in python.

import numpy as np

Create a 1-dimensional array

a = np.array([1, 2, 3, 4, 5])

Print the array

print(a)

This will create an array with the values 1, 2, 3, 4, and 5, and print it out.

You can also import specific modules or functions from a package using the
from statement, like this:

from numpy import array

a = array([1, 2, 3, 4, 5])

It is also possible to import multiple packages in a single import statement:

import numpy as np, pandas as pd

7.12 Summary
In this chapter, we covered the topic of creating modules, which are a type
of user-defined function that can be reused across multiple scripts. We went
over the concept of modules, how they are defined and created, and provided

Python Modules 171

examples of how to import them in both interpreter and script mode.
Additionally, we discussed the process of finding modules using the search
path and the dir() function. We also touched on the topic of built-in standard
modules and concluded with information on creating and utilizing packages.

Review Questions
1. What is a module in Python?
2. How do you create a module in Python?
3. What is the syntax for importing a module in Python?
4. What is the difference between the import and from...import statements

in Python?
5. How can you access functions defined in a module in Python?
6. What is the purpose of a name variable in a Python module?
7. What are standard modules in Python and how are they useful?
8. What is a package in Python?
9. How do you create a package in Python?

10. What is the difference between a module and a package in Python?
11. Which of the following statements is true about importing modules in

Python?
(a) You can only import one module at a time using the import statement
(b) You can import multiple modules at once using the from...import

statement
(c) You can import a module and its functions using the as keyword
(d) You can only import built-in modules in Python

12. Which of the following is not a standard module in Python?
(a) os
(b) sys
(c) random
(d) mathplotlib

https://taylorandfrancis.com

 	 	 	

8

Exception Handling

Highlights
l Python Exception

l Python Built-in Exceptions

l Exception Handling

l Python
User-Defined
Exceptions

An exception in Python is an event that occurs during the execution of a
program that disrupts the normal flow of instructions. When an exception
occurs, the program will stop running and an exception object will be
created, containing information about the error. This allows the program
to handle the exception and take appropriate action, such as displaying
an error message or attempting to recover from the error. Exceptions can
be raised explicitly using the “raise” statement, or they can be raised
implicitly by the Python interpreter when an error occurs. It is also
possible to handle exceptions using try-except blocks, which allows the
program to catch and handle specific exceptions while allowing others to
continue propagating.

8.1 Exception
In Python, an exception is an event that occurs during the execution
of a program that disrupts the normal flow of instructions. Exceptions
are typically caused by errors in the program, such as division by zero,

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

174 Python Programming: A Step-by-Step Guide to Learning the Language

accessing an index out of range, or a file not found. When an exception
occurs, the program will stop running and an exception object will be created,
containing information about the error. It allows the program to handle the
exception and take appropriate action, such as displaying an error message
or attempting to recover from the error. The Python interpreter has a set of
built-in exceptions that can be raised, and it is also possible for the user to
define their own exception classes.

8.2 Python Built-in Exceptions
Python has a set of built-in exceptions that are raised when certain errors occur
during the execution of a program. These exceptions are defined in the built-
in “exceptions” module and are derived from the base class “BaseException”.

Here is a list of some common built-in exceptions in Python:

Table 8.1 : Built in exceptions in python

Exception Cause

AssertionError Raised when an assert statement fails.

AttributeError Raised when an attribute reference or assignment fails.

EOFError Raised
 when
 the
 input()
 function
 hits
 an
 end-of-file

condition (EOF) without reading any data.

FileNotFoundError Raised
when
 a
 file
 or
 directory
 is
 requested
 but
 doesn’t

exist.

FloatingPointError Raised
when
a
floating
point
operation
 fails.

ImportError Raised
when
an
 import
statement
 fails
 to
find
 the
module

definition
or
when
a
 from...import
statement
 fails
 to
find
a

name that is to be imported.

IndexError Raised
when
an
 index
 is
not
 found
 in
a
sequence.

KeyError Raised when a key is not found in a dictionary.

NameError Raised when a variable is not found in the local or global
namespace.

TypeError Raised when an operation or function is applied to an
object of an inappropriate type.

ValueError Raised when a built-in operation or function receives an
argument that has the right type but an inappropriate
value.

ZeroDivisionError Raised when the second operand of a division or modulo
operation is zero.

Exception Handling 175

8.3 Exception Handling
Before we understand the exception handling let we shed some light on what
Exception is.

When a python program terminates as soon as it encounters an error. In
Python, an error can be a syntax error or an exception. Hence, the exceptions
should be properly handled so that an abrupt termination of the program is
prevented.

Exception handling in Python is a mechanism for handling errors and
exceptional conditions in your code. It allows you to write code that can
gracefully handle unexpected conditions, such as a missing file or a network
connection error, without causing the entire program to crash. In Python,
exceptions are raised when something unexpected or exceptional occurs in
the program, such as a divide-by-zero error or an attempt to access a non-
existent element in a list. When an exception is raised, the normal flow of
control in the program is interrupted, and the program looks for a piece of
code that can handle the exception.

Process of Exception Handling involves following important terms:

• try : try block used to keep the block of code that may raise e
• except : to handle the exception after catching it.
• else : it runs when no exception exist
• finally : finally block will always execute no matter what

To handle exceptions in Python, you use the try and except statements. The
try block contains the code that may raise an exception, and the except block
contains the code that will be executed if an exception is raised. For example:

Code 8.1: Illustrate the use of try and except.

try:

x = 1 / 0

except ZeroDivisionError:

print(“Cannot divide by zero.”)

In this example, the try block contains a division operation that may raise a
ZeroDivisionError exception, and the except block contains a message that
will be printed if the exception is raised.

176 Python Programming: A Step-by-Step Guide to Learning the Language

You can also use the finally block which contains code that will be executed
regardless of whether an exception was raised or not. And else block which
will be executed if no exception is raised in the try block.

It’s also possible to use raise statement to raise an exception.

if x < 0:

raise ValueError(“x should be positive.”)

8.3.1 Try, Except, Else and Finally
In Python, the try, except, and finally statements are used for exception

handling.

The try block contains the code that may raise an exception. If an exception

is raised, the normal flow of control in the program is interrupted, and the

program looks for an except block that can handle the exception.

The except block contains the code that will be executed if an exception is

raised in the corresponding try block. It can handle specific exceptions, like:

try:

x = 1 / 0

except ZeroDivisionError:

print(“Cannot divide by zero.”)

You can also handle multiple exceptions by using multiple except blocks.If
the type of exception doesn’t match any of the except blocks, it will remain
unhandled and the program will terminate.

For example:

try:

x=10

y=0

print (x/y)

except TypeError:

print(‘Unsupported operation’)

except ZeroDivisionError:

print (‘Cannot divide by zero’)

2.0

Exception Handling 177

Result:

Cannot divide by zero

The else block contain the code that will execute when there is no exception
in try block. The except block is executed if the exception occurs inside the
try block, otherwise the else block gets processed if the try block is found to
be exception free.

Code 8.2: Illustrate the use of try except and else.

try:

x=20

y=10

z= x/y

print (z)

except ZeroDivisionError:

print (‘Cannot divide by zero’)

else:

print(‘The result of division of x and y is’,z)

Output:

The result of division of x and y is 2.0

The finally block contains code that will be executed regardless of whether
an exception was raised or not. The code in this block is guaranteed to be
executed, even if an exception is raised in the try block or not.

Code 8.3: A program to demonstrate the use of finally keyword.

try:

x = 1 / 0

except ZeroDivisionError:

print(“Cannot divide by zero.”)

finally:

print(“This block will always be executed.”)

It’s often used to release resources like file handlers, network connections,
etc.

       

178 Python Programming: A Step-by-Step Guide to Learning the Language

In summary, the try block contains the code that may raise an exception, the
except block contains the code that will be executed if an exception is raised
and the finally block contains code that will always be executed regardless of
whether an exception was raised or not.

8.3.2  Catching
Specific
Exceptions
 in
Python
In Python, you can catch specific exceptions by using the except statement
along with the specific exception you want to catch. For example:

try:

x = 1 / 0

except ZeroDivisionError:

print(“Cannot divide by zero.”)

In this example, the try block contains a division operation that may raise a
ZeroDivisionError exception, and the except block contains a message that
will be printed if the exception is raised.

You can also catch multiple specific exceptions in a single except block by
providing a tuple of exception types.

try:

x = int(“hello”)

except (ValueError, TypeError):

print(“Invalid input.”)

In this example, the try block contains a conversion operation that may raise a
ValueError or TypeError exception, and the except block contains a message
that will be printed if either of those exceptions is raised. You can also use
the as keyword to assign the raised exception to a variable.

try:

x = 1 / 0

except ZeroDivisionError as e:

print(“Cannot divide by zero. Reason: “, e)

In this example, the ZeroDivisionError exception is caught and assigned to

the variable e, which can be used to access the exception’s information. It’s

also a good practice to catch the most specific exception first, and then catch

     

Exception Handling 179

more general exceptions. This is because if you catch a general exception
first, it will catch all the exceptions including the specific one, thus not giving
a chance for the specific exception to be handled.

8.3.3  try….finally

In Python, the try and finally statements are used to handle exceptions (i.e.
run-time errors) in a controlled way. The try block contains the code that may
raise an exception, and the finally block contains code that will always be
executed, whether an exception is raised or not.

Here’s an example of how to use the try and finally statements in a program:

try:

code that may raise an exception

x = 1 / 0

except ZeroDivisionError:

code to handle the exception

print(“Cannot divide by zero!”)

finally:

code that will always be executed

print(“The ‘try’ block has finished executing.”)

In the above code, the try block contains the code x = 1 / 0, which raises a
ZeroDivisionError exception because it is attempting to divide by zero. The
except block then catches the exception and prints a message to the user.
The finally block then runs and prints another message, indicating that the
try block has finished executing. It is important to note that the finally block
will always be executed, even if there is a return statement or an unhandled
exception in the try block.

8.4  Python
User
Defined
Exceptions

In Python, you can define your own custom exceptions by creating a new
class that inherits from the built-in Exception class. This allows you to create
specific types of exceptions that are tailored to the needs of your program.

Here’s an example of how to create a custom exception class:

180 Python Programming: A Step-by-Step Guide to Learning the Language

Code 8.4: Illustrating the use of raise keyword in user defined exception.

class CustomException(Exception):
def __init__(self, message):

self.message = message
raise CustomException(“This is a custom exception.”)

In the above code, we create a new class called CustomException that inherits
from the built-in Exception class. We also define an __init__ method that
takes a message as an argument, which allows us to specify a custom error
message when we raise the exception.

Here’s an example of how you might use the custom exception in a program:

Code 8.5: A program to validate the age.

class InvalidAgeError(Exception):

pass

def validate_age(age):

if age < 0:

raise InvalidAgeError(“Age cannot be negative.”)

elif age > 150:

raise InvalidAgeError(“Age cannot be greater than 150.”)

else:

print(“Age is valid.”)

try:

validate_age(-5)

except InvalidAgeError as e:

print(e)

In this example, we define a function validate_age that raises an
InvalidAgeError exception if the age passed to it is less than 0 or greater
than 150. We then call the function in a try block and catch the exception if
it is raised, printing the error message.

Exception Handling 181

8.5 Summary
In this chapter, we covered the topics of interpreting time errors (syntax errors)
and run-time errors, also known as exceptions. Python has a variety of built-
in exceptions that can be used to handle different situations that may arise
during the execution of a program. Additionally, users have the capability
to create their own custom exceptions to handle specific circumstances. We
discussed the use of the try, except, and finally constructs, providing examples
to illustrate their use. Furthermore, we explained how to create user-defined
exceptions and provided an example to demonstrate its usage.

Review Questions
1. What is an exception in Python?
2. How do you handle exceptions in Python?
3. What is the purpose of the try...except statement in Python?
4. What is the syntax for raising an exception in Python?
5. What is a built-in exception in Python and how is it used?
6. What is the difference between an error and an exception in Python?
7. What is a traceback in Python and how can it be used?
8. What is a user-defined exception in Python and how is it created?
8. What is the purpose of the finally clause in a try...except statement in

Python?
9. What is the purpose of the assert statement in Python?

10. Which of the following is not a built-in exception in Python?
(a) ZeroDivisionError
(b) IndexError
(c) UserWarning
(d) ImportError

11. Which of the following is true about exception handling in Python?
(a) The try...except statement can qhandle any type of exception
(b) The finally clause is optional in a try...except statement
(c) User-defined exceptions cannot be raised in Python
(d) The raise statement is used to handle exceptions in Python

https://taylorandfrancis.com

9

File Management in Python

Highlights
l Operations on Files

l write() and read() Methods

l Python File Methods

l Renaming and Deleting Files

l Directories in Python

Python provides several ways to work with files, including the built-
in open() function, which allows you to read, write and manipulate
files in various modes (e.g. read-only, write-only, and read-write). The
open() function returns a file object, which you can use to perform
various operations on the file, such as reading or writing its contents.
Additionally, the os and shutil modules provide additional functionality
for working with files and directories, such as creating, renaming, and
deleting files and directories, and navigating the file system.

9.1 Operations on Files
There are several operations you can perform on files in Python, some of
the most common include:

1. Reading a file: You can use the read() method of a file object to read
the entire contents of a file into a string, or you can use the readline()
method to read individual lines of the file.

184 Python Programming: A Step-by-Step Guide to Learning the Language

2.

Writing to a file: You can use the write() method of a file object to write
a string to a file. If you want to add new content to an existing file, you
can open the file in “append” mode.

3.

Updating a file: You can use the seek() method of a file object to move
the file pointer to a specific position in the file, and then use the write()
method to overwrite the contents of the file at that position.

4.

Closing a file: Once you have finished working with a file, you should
close it using the close() method of the file object.

5.

Renaming and deleting a file: Python provides functions like
os.rename(), os.remove() etc. which can be used to rename and delete
files.

6.

File handling can also be done using context manager with the help of
“with” statement, this will automatically close the file when the block of
code is exited.

7.

Iterating through the file: The for loop can be used to iterate through
the lines of a file.

8.

Copying a file: shutil.copy2() function can be used to copy a file from
one location to another, while preserving the metadata of the original
file.

9.

Moving a file: shutil.move() can be used to move a file from one location
to another.

These are just a few examples of the many operations you can perform on
files in Python. The os and shutil modules provide additional functionality for
working with files and directories, such as creating, renaming, and deleting
files and directories, and navigating the file system.

9.1.1 Opening a File
In Python, the built-in open() function is used to open a file. The basic syntax
for opening a file is:

file_object = open(file_name, mode)

where file_name is the name of the file you want to open, and mode is a
string that specifies the mode in which the file should be opened. The mode
can be “r” for reading, “w” for writing, “a” for appending, and “b” for binary
mode.

File Management in Python 185

Here is an example of how to open a file for reading in Python:

file_object = open(“example.txt”, “r”)

This will open the file “example.txt” in read mode and return a file object,
which can be used to read the contents of the file. Once you are finished
working with the file, you should close it using the close() method of the file
object.

Here is an example of how to read the contents of a file, and then close it:

Code 9.1: A program to read the content of a file.

file_object = open(“example.txt”, “r”)

print(file_object.read())

file_object.close()

You can also use context manager to open a file and this will automatically
close the file when the block of code is exited.

with open(“example.txt”, “r”) as file_object:

print(file_object.read())

It is important to note that the file you are trying to open should exist in
the directory from where the python script is running otherwise it will raise
FileNotFoundError.

9.1.2 File Modes
File modes in Python are used to specify the type of access a file should have
when it is opened. The mode can be specified as a string using the following
characters:

Here is a table of the different file modes:

Table 9.1: 	Different	modes	of	file

Mode Description

‘r’ Open	
text	
file	
for	
reading.	
(default)

‘w’ Open	
the	
file	
for	
writing.	
Creates	
the	
file	
if	
it	
does	
not	
exist	
or	
truncates	
the	

file	
if	
it	
exists.

‘x’ Open	
the	
file	
for	
exclusive	
creation.	
If	
the	
file	
already	
exists,	
raises	
a	

FileExistsError.

‘a’ Open	
the	
file	
for	
writing.	
Creates	
the	
file	
if	
it	
does	
not	
exist.	
The	
pointer	
is	

placed	
at	
the	
end	
of	
the	
file.	
If	
the	
file	
exists,	
data	
is	
appended.

186 Python Programming: A Step-by-Step Guide to Learning the Language

Mode Description

‘b’ Binary mode

‘t’ Text	
mode	
(default)

You can also use these modes in combination, for example ‘rb’ f or reading
a binary file or ‘w+’ for both reading and writing.

9.1.3 File object Attributes
File objects in Python have several attributes that provide information about
the file or allow you to change the file’s settings. Here are some common
attributes:
1. name: The name of the file that the file object is associated with.
2. mode: The mode in which the file was opened, as a string (e.g. ‘r’, ‘w’,

‘a’).
3. closed: A Boolean indicating whether the file is closed.
4. encoding: The name of the encoding used for the file, if it was opened

in text mode.
5. newlines: The newline mode used for the file, if it was opened in text

mode.
Here is an example of how to use some of these attributes:

f = open(“example.txt”, “r”)

print(f.name)

f.close()

This will print the name of the file, “example.txt”

9.1.4 File Encoding
File encoding in Python refers to the way in which characters are represented in
a file. The most common file encodings used in Python are UTF-8 and UTF-16.
UTF-8 is a variable-width encoding that can represent all Unicode characters,
while UTF-16 uses a fixed-width encoding and requires 2 bytes per character.
When opening a file in Python, you can specify the encoding using the encoding
parameter of the open() function. For example, to open a file named “example.
txt” using UTF-8 encoding, you would use the following code:

with open(“example.txt”, “r”, encoding=”utf-8”) as f:

content = f.read()

File Management in Python 187

If you don’t specify the encoding when opening a file, Python will try to
detect the encoding automatically using a library called chardet. However,
this method may not always be reliable, so it’s a good practice to specify the
encoding explicitly.

You can also use the io module to open a file with a specific encoding.

import io

with io.open(“example.txt”, “r”, encoding=”utf-8”) as f:

content = f.read()

It is important to note that if you are working with non-English text, you
should always specify the encoding of the file to ensure that the text is
displayed correctly.

9.1.5 Closing a File
In Python, a file must be closed after it is no longer needed to free up system
resources and to ensure that any changes made to the file are properly saved.
There are two ways to close a file in Python: using the close() method and using
the with statement. The close() method is used to close a file that was opened
using the open() function. For example, the following code opens a file named
“example.txt” for reading, reads its contents, and then closes the file:

f = open(“example.txt”, “r”)

content = f.read()

f.close()

It’s important to note that if you forget to close a file, or if an error occurs
while the file is open, the file may be left in an inconsistent state and your
data may be lost. A more recommended way of opening and closing files
is using the with statement. The with statement automatically takes care of
closing the file, even if an error occurs. Here’s an example:

with open(“example.txt”, “r”) as f:

content = f.read()

The file will be closed automatically when the block of code indented under
the with statement is finished executing. It is worth noting that the file
object returned by the open() function also has a __exit__() method which is
called when the block of code indented under the with statement is finished
executing, the __exit__() method will then call the close() method.

188 Python Programming: A Step-by-Step Guide to Learning the Language

9.2 write() and read() Methods
In Python, the write() and read() methods are used to read and write data to
and from files.
The write() method is used to write data to a file. It takes a string as an
argument and writes it to the file. For example, the following code opens a
file named “example.txt” for writing, writes some text to the file, and then
closes the file:

9.2.1 Writing to a File
In Python, you can write to a file using the write() method of the file object.
The write() method takes a string as an argument and writes it to the file.
Here’s an example of writing to a new file “example.txt”

with open(“example.txt”, “a”) as f:

f.write(“This is an additional line.”)
You can also write multiple lines to a file by passing a list of strings to the
writelines() method. It writes each element of the list as a separate line in
the file.

lines = [“Line 1”, “Line 2”, “Line 3”]

with open(“example.txt”, “w”) as f:

f.writelines(line + ‘\n’ for line in lines)
It’s worth noting that the write() method writes the data as bytes, not as a
string, so if you want to write string data, you need to encode it first using
the encode() method.

with open(“example.txt”, “w”, encoding=”utf-8”) as f:

f.write(“Hello, World!”)

You can also use io module to write file in python

import io

with io.open(“example.txt”, “w”, encoding=”utf-8”) as f:

f.write(“Hello, World!”)

9.2.2 Reading from a File
In Python, you can read from a file using the read() method of the file object.
The read() method reads the entire contents of the file and returns it as a
string.

	 	

	

File Management in Python 189

Here’s an example of reading the contents of a file “example.txt”:

with open(“example.txt”, “r”) as f:

content = f.read()

print(content)

You can also read the file in chunks, rather than reading the entire file at once,
by passing an argument to the read() method. The argument is the number of
bytes to read each time. For example, the following code reads the first 100
bytes of the file:

with open(“example.txt”, “r”) as f:

content = f.read(100)

print(content)

9.3 Python File Methods
In Python, there are several built-in methods that you can use to work with
files:

Table 9.2 : Bulit in File Methods

Method Name Description

open(file,	
mode)
 This	
function	
is	
used	
to	
open	
a	
file	
and	
returns	
a	
file	

object.	
The	
file	
parameter	
is	
the	
name	
of	
the	
file,	
and	
the	

mode parameter is used to specify the mode in which
the	
file	
should	
be	
opened,	
such	
as	
‘r’
 for	
reading,	
‘w’
 for	

writing,	
and	
‘a’
for	
appending.

file.read([size])
 This	
method	
reads	
at	
most	
size	
bytes	
from	
the	
file.	
If	
the	

size	
parameter	
is	
not	
specified,	
it	
will	
read	
the	
entire	
file.

file.readline()
 This	
method	
reads	
a	
single	
line	
from	
the	
file.

file.readlines()
 This	
method	
reads	
all	
the	
lines	
of	
the	
file	
and	
returns	
them	

as	
a	
list.

file.write(string)
 This	
method	
writes	
the	
contents	
of	
the	
string	
to	
the	
file.

file.writelines(list)
 This	
method	
writes	
a	
list	
of	
strings	
to	
the	
file.

file.seek(offset[,	
whence])
 This	
method	
changes	
the	
file	
position	
to	
the	
given	
offset.	

The	
whence	
parameter	
 is	
optional	
and	
defaults	
 to	
0,	

which	
means	
absolute	
file	
positioning.

file.tell()
 This	
method	
returns	
the	
current	
file	
position.

file.close()
 This	
method	
closes	
the	
file.

190 Python Programming: A Step-by-Step Guide to Learning the Language

When you are done working with a file, it is important to close it using the
file.close() method to free up system resources.

It’s important to note that, python have other library like pandas and numpy
that have their own file read and write functionality. They are more powerful
and flexible than the built-in python file methods

You can use it like this:

import pandas as pd

df = pd.read_csv(‘file.csv’)
df.to_csv(‘newfile.csv’, index=False)

9.4 tell() and seek() Methods
The tell() method in Python returns the current position of the file pointer.
This is an integer value that represents the number of bytes from the beginning
of the file.

The seek() method in Python allows you to move the file pointer to a specific
position. You can specify the position as an integer value, measured in bytes
from the beginning of the file. The method takes two arguments: the first
argument is the position to move the pointer to, and the second argument is
an optional value that specifies how to interpret the first argument.

For example, the following code opens a file, reads the current position,
moves the pointer to a new position, and then reads the new position:

f = open(“example.txt”, “r”)

print(f.tell()) # prints 0

f.seek(5)

print(f.tell()) # prints 5

f.close()

It’s important to note that after moving the pointer, it’s possible to read or
write the file from the new position.

9.5 Renaming and Deleting Files
In Python, you can rename and delete files using the os module. To rename a
file, you can use the os.rename() function, which takes the current file name
and the new file name as its arguments. For example:

File Management in Python 191

import os

os.rename(“current_file.txt”, “new_file.txt”)

To delete a file, you can use the os.remove() function, which takes the file
name as its argument. For example:

import os

os.remove(“file_to_delete.txt”)

It’s also worth noting that there is also shutil module which also have similar
functionality such as shutil.move(src, dst) and shutil.rmtree(path, ignore_
errors=False, onerror=None) which can be useful in some cases.

9.5.1 Rename() Method
The rename() method in python is used to rename a file or directory. It is a
method of the os module and takes two arguments: the current name of the
file or directory and the new name. For example, to rename a file “old_file.
txt” to “new_file.txt”, you would use the following code:

import os

os.rename(“old_file.txt”, “new_file.txt”)

It also can be used with os.path.join() method to rename files in a specific
directory.

import os

os.rename(os.path.join(directory, ‘old_file.txt’), os.path.join(directory,

‘new_file.txt’))

Note that this method will raise a FileNotFoundError if the file or directory
you are trying to rename does not exist, or a PermissionError if you do not
have permission to rename the file or directory.

9.5.2 Remove() Method
The remove() method in Python is a built-in method for lists that can be used
to remove an item from a list. The method takes a single argument, which is
the item to be removed from the list. If the item is not present in the list, the
method raises a ValueError exception.

Syntax : list.remove(item)

192 Python Programming: A Step-by-Step Guide to Learning the Language

For example:

numbers = [1, 2, 3, 4, 5]

numbers.remove(3)

print(numbers) # Output: [1, 2, 4, 5]

In this example, the remove() method is used to remove the value 3 from the
list numbers. After the method is called, the list contains the values 1, 2, 4,
and 5, and the value 3 is no longer present in the list.

9.6 Directories in Python
In Python, a directory is a file system folder that contains other files or
directories. Python provides several built-in modules, such as os and os.path,
that make it easy to interact with the file system and manipulate directories.

The os module provides a way to interact with the underlying operating
system, including creating, moving, and deleting files and directories. The
os.path module provides additional functionality for working with file and
directory paths, such as checking whether a path is a file or a directory, and
joining multiple paths together.

With the os and os.path modules, you can perform various operations on
directories in Python such as:

• Creating new directories
• Changing the current working directory
• Listing the contents of a directory
• Removing a directory
• Renaming a directory
• Checking if a directory exists

These modules are a powerful tool for automating common file and directory
tasks, and for creating scripts that manipulate the file system in various ways.

9.6.1 mkdir() Method
The os.mkdir() method in Python is a function that creates a new directory
with the specified name. It takes one argument, which is the name of the
directory to be created.

Syntax : os.mkdir(path, mode = 0o777, *, dir_fd = None)

File Management in Python 193

The path parameter is required, and it specifies the name of the directory to
be created. The mode parameter is an optional argument that specifies the
permissions mode for the new directory, and the default value is 0o777. The
dir_fd parameter is used to specify a file descriptor for the parent directory.
For example:

import os

os.mkdir(“new_directory”)

This example creates a new directory called “new_directory” in the current
working directory. If the directory already exists, os.mkdir() will raise a
FileExistsError exception.

It’s important to note that the os.mkdir() method creates only one new
directory at a time, If you need to create multiple directories at once you can
use os.makedirs() method.

9.6.2 chdir() Method
The os.chdir() method in Python is a function that changes the current working

directory. It takes one argument, which is the path to the new directory.

Syntax : os.chdir(path)

The path parameter is required, and it specifies the path to the new directory.

The method changes the current working directory to the specified path. For

example:

import os

os.chdir(“/new_directory”)

This example changes the current working directory to “/new_directory”

It’s important to note that the os.chdir() method only change the current
working directory for the process that calls it. It does not affect the current
working directory of other processes or of the terminal where the script is
run. Also, if the specified directory does not exist, the os.chdir() method will
raise a FileNotFoundError exception.

9.6.3 getcwd() Method
getcwd() is a method in the os module in Python that stands for “Get Current
Working Directory”. It returns a string representing the current working
directory (i.e., the directory in which the Python process is running). Example
usage:

194 Python Programming: A Step-by-Step Guide to Learning the Language

import os

current_dir = os.getcwd()

print(current_dir)

9.6.4 rmdir() Method
rmdir() is a method in the os module in Python that stands for “Remove
Directory”. It is used to remove an empty directory. If the directory is not
empty, the method will raise an error. Example usage:

import os
os.rmdir(“path/to/directory”)
Note: The directory to be removed must be empty, otherwise, a
FileNotFoundError or OSError will be raised.

9.6.5 listdir() Method
listdir() is a method in the os module in Python that returns a list of filenames
in the specified directory. If no directory is specified, it defaults to the current
working directory. Example usage:

import os

files_and_dirs = os.listdir(“path/to/directory”)

print(files_and_dirs)

The resulting list includes both files and directories, so to list only the files or
only the directories, you can use additional filtering logic on the list returned
by listdir().

9.7 Python Directory Methods
In Python, the os module provides a number of methods for working with
directories. Here are some of the most commonly used methods:

Table 9.3 : Directory Methods in Python

Method Description

os.mkdir(path)
 Creates	
a	
new	
directory	
at	
the	
specified	
path.

os.rmdir(path)
 Removes	
the	
directory	
at	
the	
specified	
path	
(the	
directory	

must	
be	
empty).

File Management in Python 195

Method Description

os.chdir(path)
 Changes	
the	
current	
working	
directory	
to	
the	
specified	
path.

os.getcwd()
 Returns	
a	
string	
representing	
the	
current	
working	
directory.

os.listdir(path)
 Returns	
a	
list	
of	
filenames	
in	
the	
specified	
directory	
(defaults	

to	
the	
current	
working	
directory	
if	
no	
path	
is	
specified).

os.scandir(path)
 Returns an iterator of DirEntry objects representing entries
in	
the	
specified	
directory	
(similar	
to	
listdir(),	
but	
faster	
and	

provides	
more	
information	
about	
each	
entry).

os.makedirs(path)
 Recursively	
creates	
directories,	
including	
any	
intermediate	

ones	
that	
do	
not	
exist.

os.removedirs(path)
 Recursively	
removes	
directories,	
including	
any	
intermediate	

ones	
that	
are	
now	
empty.

os.stat(path)
 Returns	
information	
about	
the	
specified	
file	
or	
directory	
as	

a	
stat_result	
object.

os.path.isdir(path)
 os.path.isdir(path)

9.8 Summary
In this chapter, we delve into the subject of data files. We cover the various
techniques for handling files and directories in Python, along with the
practical applications of each method. Topics include creating and opening
files, operating in different modes such as reading and writing, as well as
methods for renaming, deleting, creating directories, changing directories,
and removing directories.

Review Questions
1. What is a file in Python?
2. How do you open a file in Python and what modes are available?
3. What is the difference between read and write mode in Python file

handling?
4. How do you read the contents of a file in Python?
5. How do you write data to a file in Python?
6. What is the difference between write and append mode in Python file

handling?
7. How do you close a file in Python?
8. What is the os module in Python and how is it used for file handling?
9. How do you rename a file in Python?

196 Python Programming: A Step-by-Step Guide to Learning the Language

10. How do you delete a file in Python?
11. Which of the following is not a method for file handling in Python?

(a) open()
(b) close()
(c) read()
(d) writeLine()

12. Which of the following is true about directories in Python?
(a) Directories can only contain files and not other directories
(b) The os module in Python can be used to create and delete directories
(c) Directories in Python cannot be nested
(d) Directories in Python can only be created in the root directory

10

Classes and Objects

Highlights
l Object-Oriented Programming Methodologies

l Designing Classes

l Creating Objects

l Accessing Attributes

l Built - in Class Attributes

l Garbage Collection

Object-Oriented Programming (OOP) is a programming methodology
that revolves around the concept of objects, which are instances of
classes. In Python, you can use OOP to create classes that encapsulate
data and behavior. A class defines the attributes and methods that objects
of that class will have. Attributes are the data or properties of an object,
while methods are the functions or behaviors that the object can perform.

To create a class in Python, you use the “class” keyword, followed by
the name of the class and a colon. Within the class, you define attributes
and methods using instance variables and instance methods. Instance
variables are variables that are specific to each object of the class, while
instance methods are methods that can be called on each object of the
class.

198 Python Programming: A Step-by-Step Guide to Learning the Language

In Python, you can also use inheritance to create subclasses that inherit
attributes and methods from a parent class. This allows you to reuse code
and create hierarchies of classes that share common behavior. OOP in Python
can be used to create complex programs and libraries, as well as to model
real-world objects and systems.

Object-Oriented Programming Methodologies:

• Class: A blueprint or template for creating objects that share similar
attributes and behaviors.

• Object: An instance of a class that has its own set of attributes and
methods.

• Inheritance: A way to create new classes based on existing classes,
inheriting their attributes and methods.

• Polymorphism:

The ability of objects to take on different forms or
behave in different ways depending on the context.

• Encapsulation: The practice of hiding the internal details of an object
and exposing only the necessary information through methods.

• Abstraction: The process of reducing complexity by hiding unnecessary
details, allowing you to focus on the essential features of an object or
system.

Classes and objects are the fundamental building blocks of object-oriented
programming (OOP) in Python.

A class is a blueprint or template for creating objects, which can contain data
(attributes) and code (methods) that act on that data. Classes provide a way
to structure the data and behavior of similar objects, making it easier to create
and manage those objects.

An object is an instance of a class, created at runtime, with its own set of
attributes and methods. Objects are used to model real-world entities and
their behavior, making it easier to represent and manipulate complex data
and logic in a program.

In Python, you can define a class using the class keyword, followed by the
name of the class, and then the class definition inside a code block. You can
define the attributes and methods of a class, and when you create an object
from a class, it will inherit all of the attributes and methods defined in that
class.

Classes and Objects 199

Here’s a simple example to illustrate the concept of classes and objects in
Python:

class Car:
def __init__(self, make, model, year):

self.make = make
self.model = model
self.year = year

def honk(self):

print(“Beep beep!”)

Create an object of the Car class
my_car = Car(“Toyota”, “Camry”, 2020)

Access attributes of the object
print(my_car.make)
print(my_car.model)
print(my_car.year)

Call a method of the object
my_car.honk()

In this example, we define a class Car with three attributes (make, model, and
year) and a single method (honk). We then create an object my_car from the
Car class, and access its attributes and call its methods.

10.1 Designing Classes
In Python, classes are used to define custom data structures that can be used
to model real-world objects and their behavior. A class is defined using the
class keyword, followed by the name of the class, and a colon. The body of
the class is indented, and it can contain methods (functions that are associated
with the class) and attributes (data that is associated with the class).

200 Python Programming: A Step-by-Step Guide to Learning the Language

Here is a simple example of a class in Python:

Code 10.1 designing class in Python

class Dog:
def __init__(self, name, breed):

self.name = name
self.breed = breed

def bark(self):

print(“Woof!”)

In this example, the Dog class has two attributes name and breed, and one
method bark(). The special method __init__ is a constructor that is called
when a new instance of the class is created. The self parameter refers to the
instance of the class and is used to access attributes and methods.

10.2 Creating Objects
In Python, objects are instances of classes and represent real-world entities
and their behavior. To create an object, you need to call the constructor
of the class. The constructor is a special method called __init__, which is
automatically invoked when you create an object.

Here’s an example of how you can create an object in Python:

Code 10.2 creating an object in Python

class Dog:

def __init__(self, name, breed):

self.name = name

self.breed = breed

def bark(self):

print(“Woof!”)

dog = Dog(“Rufus”, “Labrador”)

Classes and Objects 201

In this example, we define a class called Dog with a constructor __init__ that
takes two parameters name and breed. We then create an instance of the Dog
class by calling Dog(“Rufus”, “Labrador”). This creates a new object dog
and initializes its name and breed attributes.

Code 10.3 access the attributes of an object using dot notation

print(dog.name) # Outputs: “Rufus”

print(dog.breed) # Outputs: “Labrador”

You can also call the methods of an object in the same way:

dog.bark() # Outputs: “Woof!”

This is just a simple example of how you can create objects in Python. You
can define more complex classes with multiple attributes, methods, and
inheritance to model real-world objects and their behavior.

10.2.1 Class Variable
In Python, a class variable is a variable that is shared by all instances (objects)
of a class. It is a variable that is defined within the class, but outside of any
methods. Class variables are accessed using the class name, rather than an
instance of the class.

Class variables are useful for storing data that is common to all instances of
a class, such as a default value or a constant. They can be modified by any
instance of the class, but the changes will be visible to all instances of the
class.

Code 10.4 Illustration of class variable

class MyClass:

class_variable = 0

def __init__(self, instance_variable):

self.instance_variable = instance_variable

MyClass.class_variable += 1

def print_variables(self):

print(f”Instance variable: {self.instance_variable}”)

print(f”Class variable: {MyClass.class_variable}”)

202 Python Programming: A Step-by-Step Guide to Learning the Language

10.2.2 Instance Variable
In Python, an instance variable is a variable that is unique to each instance
(object) of a class. It is a variable that is defined within the class, but inside a
method, usually the __init__() method, which gets called when a new object
is created. Each instance of the class has its own set of instance variables.

Instance variables are used to store data that is specific to each instance of
the class, such as the name or age of a person. Instance variables are accessed
using the self keyword, which refers to the instance of the class.

Code 10.5 Illustration of class with instance variables

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def say_hello(self):

 print(f”Hello, my name is {self.name} and I’m {self.age} years old.”)

In this example, name and age are instance variables that are initialized with
the values passed in as arguments to the __init__() method. The say_hello()
method uses these instance variables to print out a message.

To create objects from this class and access the instance variables, you would
do the following:

Code 10.6 Illustration of class with instance variables

person1 = Person(“Alice”, 30)

person2 = Person(“Bob”, 25)

person1.say_hello() # Output: Hello, my name is Alice and I’m 30 years

old.

person2.say_hello() # Output: Hello, my name is Bob and I’m 25 years

old.

In this example, person1 and person2 are two different instances of the Person
class, and they each have their own set of instance variables name and age.
The say_hello() method prints out the values of these instance variables for
the given object.

Classes and Objects 203

10.3 Types of Methods
In Python, there are three types of methods that can be defined within a class:

1. Instance Methods: These are the most common type of methods and are
associated with the object of a class. They take self as the first parameter
and are used to modify the object’s state or behavior.

2. Class Methods: These methods are associated with the class and can
be called on the class itself, rather than an instance of the class. They
take cls as the first parameter and are used to modify the class’s state or
behavior.

3. Static Methods: These methods are not associated with either the class
or the instance of the class. They take no special parameters (self or cls)
and are used for utility functions that do not depend on the class’s state
or behavior.

Code 10.7 Illustration of class method

class MyClass:

class_variable = 0

def __init__(self, instance_variable):

self.instance_variable = instance_variable

MyClass.class_variable += 1

def instance_method(self):

 print(f”This is an instance method. Instance variable: {self.instance_
variable}”)

@classmethod

def class_method(cls):

print(f”This is a class method. Class variable: {cls.class_variable}”)

@staticmethod

def static_method():

print(“This is a static method.”)

In this example, instance_method is an instance method, class_method is a
class method, and static_method is a static method. instance_method takes
self as the first parameter, class_method takes cls as the first parameter and is
decorated with @classmethod, and static_method takes no special parameters
and is decorated with @staticmethod.

     

204 Python Programming: A Step-by-Step Guide to Learning the Language

Code 10.7 Illustration of call class method

obj = MyClass(“object”)

obj.instance_method() # Output: This is an instance method. Instance variable:

object

MyClass.class_method() # Output: This is a class method. Class variable: 1

MyClass.static_method() # Output: This is a static method.

In this example, obj is an instance of the MyClass class, and we call the
instance_method method on it. We also call the class_method and static_
method methods on the MyClass class itself.

10.4  Access
Specifiers
 in
Python

In Python, access specifiers are used to restrict access to class attributes
and methods from outside the class. There are no true access specifiers in
Python like in other object-oriented programming languages, such as private,
protected, and public. However, Python provides a convention of using
underscores to indicate the intended visibility of a class member. Here are
the different types of access specifiers in Python:

1. Public: These are class members that are intended to be accessible from
outside the class. There are no special syntax rules to define public
members. They are just defined without any leading underscores.

2. Protected: These are class members that are intended to be accessed only
within the class and its subclasses. In Python, there is no true protected
access specifier, but the convention is to use a single leading underscore
to indicate that a member is intended to be protected.

3. Private: These are class members that are intended to be accessed only
within the class. In Python, there is no true private access specifier, but
the convention is to use a double leading underscore to indicate that a
member is intended to be private.

Code 10.8 Illustration of access specifiers in python

class MyClass:

def __init__(self):

self.public_member = “public”

self._protected_member = “protected”

self.__private_member = “private”

Classes and Objects 205

def get_private_member(self):

return self.__private_member

In this example, public_member is a public member, _protected_member is
a protected member, and __private_member is a private member. The get_
private_member method is used to retrieve the value of the private member.

Code 10.9 To access these members from outside the class

obj = MyClass()

print(obj.public_member) # Output: public

print(obj._protected_member) # Output: protected

print(obj.get_private_member()) # Output: private

In this example, public_member and _protected_member can be accessed
directly from outside the class, while __private_member is accessed using
the get_private_member method. However, it’s important to note that these
are just conventions, and there is nothing stopping a user from accessing or
modifying these members directly, even if they are intended to be protected
or private.

10.5 Accessing Attributes
In Python, you can access the attributes of an object using dot notation. The

syntax is object_name.attribute_name.

Here’s an example:

Code 10.10 accessing attributes in Python

class Dog:

def __init__(self, name, breed):

self.name = name

self.breed = breed

def bark(self):

print(“Woof!”)

dog = Dog(“Rufus”, “Labrador”)

print(dog.name) # Outputs: “Rufus”

print(dog.breed) # Outputs: “Labrador”

   

206 Python Programming: A Step-by-Step Guide to Learning the Language

In this example, the Dog class has two attributes name and breed. We create
an instance of the Dog class and store it in the variable dog. To access the
attributes of the dog object, we use dot notation dog.name and dog.breed.
You can also access the attributes of an object dynamically using the getattr
function. The syntax is getattr(object_name, attribute_name). For example:
Code 10.11 accessing attributes using getattr function

name = getattr(dog, “name”)

breed = getattr(dog, “breed”)

print(name) # Outputs: “Rufus”

print(breed) # Outputs: “Labrador”

The getattr function takes two arguments: the object and the name of the
attribute you want to access. If the attribute exists, it returns the value of the
attribute. If the attribute does not exist, it returns an AttributeError. You can
also provide a default value to be returned in case the attribute does not exist,
by passing a third argument to getattr.

10.6  The
Class
Program

A class program in Python defines a custom data structure that can be used
to model real-world objects and their behavior. Here is an example of a class
program in Python:
Code 10.12 A class program in Python

class Car:
def __init__(self, make, model, year):

self.make = make
self.model = model
self.year = year

def honk(self):
print(“Beep Beep!”)

car = Car(“Toyota”, “Camry”, 2020)
print(car.make) # Outputs: “Toyota”
print(car.model) # Outputs: “Camry”
print(car.year) # Outputs: 2020
car.honk() # Outputs: “Beep Beep!”

Classes and Objects 207

In this example, we define a class called Car with a constructor __init__ that
takes three parameters make, model, and year. The constructor sets these
parameters as attributes of the Car class. We also have a method honk that
outputs “Beep Beep!” when called.

We then create an instance of the Car class and store it in the variable car.
To access the attributes and call the methods of the car object, we use dot
notation.

10.6.1 Using a Class with Input
In Python, you can use a class with user input by taking input from the user
and passing it as arguments to the class constructor. Here’s an example:

Code 10.13 A class with user input

class Dog:

def __init__(self, name, breed):

self.name = name

self.breed = breed

def bark(self):

print(“Woof!”)

name = input(“Enter dog name: “)

breed = input(“Enter dog breed: “)

dog = Dog(name, breed)

print(dog.name)

print(dog.breed)

dog.bark()

In this example, we use the input function to take user input for the dog’s
name and breed. The user inputs are then passed as arguments to the Dog
class constructor when creating a new instance of the class. The rest of the
program works the same as before, accessing the attributes and calling the
method of the dog object.

You can use this pattern to create class instances with user input in any
Python program. Just make sure to handle any exceptions or errors that might
occur, such as invalid input format, to ensure the stability and reliability of
your program.

       

208 Python Programming: A Step-by-Step Guide to Learning the Language

10.6.2  A
Class
Program
with
Computations

A class program with computations in Python is a program that uses a custom
data structure defined using a class to perform computations. The class can
have attributes and methods that are used to store and manipulate data, as
well as perform operations and computations on the data.

For example, you can create a class that represents a circle and has attributes

for the radius of the circle, as well as methods to calculate the area and

circumference of the circle.

Code 10.14 A class program with computations in Python

class Circle:

pi = 3.14

def __init__(self, radius):

self.radius = radius

def area(self):

return Circle.pi * (self.radius ** 2)

radius = float(input(“Enter the radius of the circle: “))

circle = Circle(radius)

print(“The area of the circle is”, circle.area())

In this example, we define a class Circle with a class attribute pi set to 3.14.
The class also has a constructor __init__ that takes a radius argument and
sets it as an attribute of the Circle class. We also have a method area that
calculates and returns the area of the circle using the formula pi * r^2.

We then create an instance of the Circle class and store it in the variable
circle. We use the input function to take user input for the radius of the circle.
The input is then converted to a float and passed as an argument to the Circle
class constructor.

Finally, we call the area method on the circle object to calculate the area of

the circle and print the result.

10.7 Editing Class Attributes
Editing class attributes in Python refers to the process of changing the value
of an attribute that is associated with a class. Class attributes are defined in
the class definition and are shared by all instances of the class.

Classes and Objects 209

In Python, you can edit class attributes by directly modifying the attribute
value on an instance of the class. This means that you can change the value of
an attribute for a specific instance of the class, without affecting the value of
that attribute for other instances of the class or for the class definition itself.

Code 10.15 editing class attributes in Python

class Dog:

def __init__(self, name, breed):

self.name = name

self.breed = breed

def bark(self):

print(“Woof!”)

dog = Dog(“Buddy”, “Labrador”)

print(dog.name)

print(dog.breed)

dog.name = “Rufus”

dog.breed = “Golden Retriever”

print(dog.name)

print(dog.breed)

In this example, we create an instance of the Dog class and store it in the
dog variable. We then print the original name and breed of the dog, which
are “Buddy” and “Labrador”.

Next, we modify the name and breed attributes of the dog object by directly
assigning new values to them. Finally, we print the updated name and breed
of the dog, which are “Rufus” and “Golden Retriever”.

Note that the changes we make to the attributes of an instance of the class
only affect that particular instance, and do not affect other instances or the
class definition itself. This allows you to have different instances of the same
class with different attribute values.

10.8 Built-in Class Attributes
In Python, there are several built-in class attributes that you can use to
access information about a class or an instance of a class. Some of the most
commonly used built-in class attributes are:

210 Python Programming: A Step-by-Step Guide to Learning the Language

1.

__dict__: A dictionary that contains the namespace of an object. It stores
the object’s attributes and their values.

2.

__doc__: A string that contains the documentation for a class or an
object.

3.

__name__: A string that contains the name of the class or the object.
4.

__module__: A string that contains the name of the module where the

class or the object is defined.
5. __class__: A reference to the class that an instance of a class belongs to.

For example, consider the following class:

Code 10.16 built in attributes in Python

class Dog:

species = “Canis lupus familiaris”

def __init__(self, name, breed):

self.name = name

self.breed = breed

def bark(self):

print(“Woof!”)

dog = Dog(“Buddy”, “Labrador”)

print(dog.__dict__)

print(dog.__doc__)

print(dog.__name__)

print(dog.__module__)

print(dog.__class__)

In this example, we create an instance of the Dog class and store it in the
dog variable. Then, we use the built-in class attributes __dict__, __doc__,
__name__, __module__, and __class__ to access information about the dog
instance.

Classes and Objects 211

The output of this code will be a dictionary that contains the attributes and
values of the dog instance, a string that contains the documentation for the
Dog class (which is empty in this case), a string that contains the name of
the dog instance (which is not defined), a string that contains the name of
the module where the Dog class is defined, and a reference to the Dog class
itself.

10.9 Garbage Collection/Destroying Objects
In Python, memory management is handled automatically by the Python
interpreter, using a mechanism called “garbage collection”. The garbage
collector periodically frees up memory that is no longer being used by the
program.

When an object is no longer needed, the Python interpreter automatically
marks the object as “unreachable” and the memory occupied by the object
becomes eligible for garbage collection. When the next garbage collection
cycle occurs, the memory occupied by the unreachable object is freed up.

In general, you do not need to worry about destroying objects in Python, as
the garbage collector takes care of it automatically. However, there may be
times when you want to explicitly release an object’s memory before the next
garbage collection cycle.

To do this, you can use the del statement in Python. The del statement
removes the reference to an object, making the object eligible for garbage
collection. For example:

dog = Dog(“Buddy”, “Labrador”)

del dog

In this example, we create an instance of the Dog class and store it in the dog
variable. Then, we use the del statement to remove the reference to the dog
instance, making it eligible for garbage collection.

Note that removing a reference to an object does not immediately free up the
memory occupied by the object. The memory occupied by the object will be
freed up during the next garbage collection cycle.

10.10  Summary

In this chapter, we covered the basics of designing classes in Python. A class
is a blueprint for creating objects, which can be used to encapsulate data and
behavior. We learned how to create objects from a class by calling the class

212 Python Programming: A Step-by-Step Guide to Learning the Language

as if it were a function. We also learned how to access the attributes of an
object using dot notation. In addition to user-defined attributes, Python has
several built-in class attributes that can be used to access information about
a class or an object. These built-in attributes include __dict__, __doc__,
__name__, __module__, and __class__. Finally, we learned about garbage
collection in Python, which is a mechanism for freeing up memory that is
no longer being used by the program. The Python interpreter automatically
frees up memory that is no longer being used through a mechanism called
“garbage collection”, although it is possible to explicitly release an object’s
memory by using the del statement.

Review Questions
1. What is a class in Python?
2. How do you create an object from a class in Python?
3. How do you access the attributes of an object in Python?
4. What are some built-in class attributes in Python?
5. What is the purpose of garbage collection in Python?
6. How does Python handle memory management?
7. Can you explicitly release an object’s memory in Python?
8. What is the difference between a class and an object in Python?
9. How do you access the documentation of a class in Python?

10. What is the purpose of the __dict__ built-in class attribute in Python?
11. What is the purpose of the __init__ method in a Python class?

A. To initialize the class
B. To call other methods within the class
C. To specify the attributes of an object

12. What is the purpose of garbage collection in Python?
A. To free up memory that is no longer being used by the program
B. To increase the speed of the program
C. To reduce the memory usage of the program

11

Inheritance

Highlights
l Python Single Inheritance

l Python Multiple Inheritance

l Python Multilevel Inheritance

l Method Overriding in Python

l Special Functions in Python

Inheritance is a concept in object-oriented programming (OOP) where a
class can inherit properties and methods from a parent class. This allows
you to create new classes that are related to existing classes, and to reuse
or extend the existing code. The new class is called the derived class or
subclass, and the existing class is called the base class or superclass.

In Python, inheritance is implemented using the class inheritance syntax.
A subclass is defined by including the name of the parent class in
parentheses after the class name, like this:

class DerivedClass(BaseClass):

subclass code here

The subclass inherits all the attributes and methods of the parent class,
and can add new attributes or override existing ones. This makes it
possible to reuse and extend code, and to create more specialized classes
that are based on a common base class.

214 Python Programming: A Step-by-Step Guide to Learning the Language

Inheritance is a powerful feature of OOP that allows for code reuse and
modularity. It makes it possible to define common functionality once in a
base class, and then reuse that functionality in multiple derived classes.

11.1 Python Single Inheritance
Single inheritance is a type of inheritance in object-oriented programming
(OOP) where a subclass inherits properties and methods from a single parent
class. In Python, single inheritance is achieved by defining a subclass and
specifying the parent class in parentheses after the subclass name.

Code 11.1 single inheritance in Python

class Animal:

def __init__(self, name, species):

self.name = name

self.species = species

def make_sound(self):

print(“Some generic animal sound”)

class Dog(Animal):

def __init__(self, name, breed):

Animal.__init__(self, name, species=”Dog”)

self.breed = breed

def make_sound(self):

print(“Woof woof!”)

dog = Dog(“Max”, “Labrador”)

print(dog.name)

print(dog.species)

print(dog.breed)

dog.make_sound()

In this example, the Dog class inherits from the Animal class. This means
that the Dog class has access to all the attributes and methods of the Animal
class, including the name and species attributes and the make_sound method.
The Dog class can also add its own attributes and methods, such as the breed
attribute and its own implementation of the make_sound method.

Inheritance 215

11.2 Python Multiple Inheritance
Multiple inheritance is a type of inheritance in object-oriented programming
(OOP) where a class inherits properties and methods from multiple parent
classes. In Python, multiple inheritance is achieved by defining a class
and specifying multiple parent classes in parentheses after the class name,
separated by commas.

Code 11.2 multiple inheritance in Python

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def say_hello(self):

print(f”Hello, my name is {self.name}”)

class Student:

def __init__(self, student_id):

self.student_id = student_id

def enroll(self):

print(f”Enrolling student with ID {self.student_id}”)

class Teacher(Person, Student):

def __init__(self, name, age, teacher_id):

Person.__init__(self, name, age)

Student.__init__(self, teacher_id)

self.teacher_id = teacher_id

def teach(self):

print(f”Teacher {self.name} is teaching”)

teacher = Teacher(“Jane Doe”, 35, 12345)

print(teacher.name)

216 Python Programming: A Step-by-Step Guide to Learning the Language

print(teacher.age)

print(teacher.student_id)

print(teacher.teacher_id)

teacher.say_hello()

teacher.enroll()

teacher.teach()

In this example, the Teacher class inherits from both the Person and Student
classes. This means that the Teacher class has access to all the attributes
and methods of both the Person and Student classes, including the name,
age, student_id, and enroll methods. The Teacher class can also add its own
attributes and methods, such as the teacher_id attribute and the teach method.

It’s important to note that when multiple inheritance is used, the order of the
parent classes in the class definition can matter. If there are conflicts between
the parent classes, the first parent class in the list will take precedence. This
is known as the method resolution order (MRO) in Python.

11.3 Python Multilevel Inheritance
Multilevel inheritance is a type of inheritance in object-oriented programming
(OOP) where a class inherits properties and methods from a parent class,
which itself inherits properties and methods from a grandparent class. In other
words, the inheritance is hierarchical and passes down from one generation
to the next.

Code 11.3 multilevel inheritance in Python

class Animal:

def __init__(self, species):

self.species = species

def make_sound(self):

print(f”{self.species} makes a sound”)

class Mammal(Animal):

def __init__(self, species, fur_color):

Animal.__init__(self, species)

self.fur_color = fur_color

Inheritance 217

def have_fur(self):

print(f”{self.species} has {self.fur_color} fur”)

class Dog(Mammal):

def __init__(self, breed, fur_color):

Mammal.__init__(self, “Dog”, fur_color)

self.breed = breed

def bark(self):

print(f”{self.breed} barks”)

dog = Dog(“Labrador”, “Golden”)

print(dog.species)

print(dog.fur_color)

print(dog.breed)

dog.make_sound()

dog.have_fur()

dog.bark()

In this example, the Dog class inherits from the Mammal class, which in
turn inherits from the Animal class. This creates a hierarchical inheritance
structure where the Dog class has access to all the attributes and methods
of both the Mammal and Animal classes, including the species, fur_color,
make_sound, and have_fur methods. The Dog class can also add its own
attributes and methods, such as the breed attribute and the bark method.

Multilevel inheritance allows for a more organized and reusable code
structure, as properties and methods can be shared between classes in a
hierarchical manner.

11.4 Method Overriding in Python
Method overriding is a feature in object-oriented programming (OOP) where
a subclass provides a new implementation for a method that is already defined
in its parent class. The method in the subclass has the same name, return type,
and parameters as the method in the parent class, but the implementation is
different.

In Python, method overriding is achieved by defining a method with the same
name in the subclass as in the parent class. The new implementation in the

218 Python Programming: A Step-by-Step Guide to Learning the Language

subclass will override the implementation in the parent class for objects of
the subclass.

Code 11.4 method overriding in Python

class Shape:

def area(self):

pass

class Square(Shape):

def __init__(self, side):

self.side = side

def area(self):

return self.side * self.side

square = Square(5)

print(square.area())

In this example, the Square class inherits from the Shape class. The Shape
class has a area method that does not have an implementation. The Square
class provides its own implementation for the area method by defining the
method with the same name in the class and providing its own implementation.
When the area method is called on a Square object, the implementation in the
Square class is used instead of the one in the Shape class. This is an example
of method overriding.

Method overriding is a powerful feature that allows subclasses to provide
their own implementation for a method while still preserving the same
interface as the parent class. This makes the code more flexible and reusable,
as subclasses can inherit common properties and methods from the parent
class but still have the ability to customize their behavior.

11.5 Special Functions in Python
In Python, special functions are a set of functions that have special behavior
and are used in specific situations. Some of the most common special
functions are:

1. __init__: The __init__ method is a special function that is called when
an object is created from a class. It is used to initialize the object’s
attributes and can take arguments to set the values of those attributes.

Inheritance 219

2. __str__: The __str__ method is a special function that is used to return a
string representation of an object. The string returned by __str__ is used
when the print function is used on the object or when the str function is
used to convert the object to a string.

3. __repr__: The __repr__ method is similar to the __str__ method, but
is used to return a string representation of an object that can be used to
recreate the object. The string returned by __repr__ is used when the repr
function is used to convert the object to a string.

4. __add__: The __add__ method is used to define the behavior of the +
operator when used on objects of the class. By defining __add__, you
can specify how objects of the class should be added together.

5. __len__: The __len__ method is used to define the behavior of the len
function when used on objects of the class. By defining __len__, you can
specify how the length of an object should be calculated.

6. __getitem__: The __getitem__ method is used to define the behavior of
the indexing operator [] when used on objects of the class. By defining
__getitem__, you can specify how objects of the class should be indexed.

7. __setitem__: The __setitem__ method is used to define the behavior of
the index assignment operator [] when used on objects of the class. By
defining __setitem__, you can specify how objects of the class should be
modified through indexing.

These special functions allow you to customize the behavior of your classes
and make them more versatile. By using these functions, you can create
objects that behave like built-in data types, such as strings and lists, and that
can be used in a more intuitive and natural way.

11.6 Summary
Inheritance is a fundamental aspect of object-oriented programming in
Python, which allows you to create new classes that inherit properties and
behaviors from existing classes. The concept of inheritance allows for code
reusability and modularity, making it easier to maintain and extend code
over time. In Python, you can achieve inheritance through single inheritance,
multiple inheritance, and multilevel inheritance. Single inheritance is when
a class inherits properties and behaviors from a single parent class. Multiple
inheritance is when a class inherits properties and behaviors from multiple
parent classes. Multilevel inheritance is when a class inherits properties and
behaviors from a parent class, which in turn inherits from another parent

220

 Python Programming: A Step-by-Step Guide to Learning the Language

class. Method overriding is another important aspect of inheritance, where
a subclass can provide its own implementation for a method defined in its
parent class. Additionally, there are several special functions in Python, such
as init, str, and repr, which have specific functionality and can be overridden
in a subclass to customize its behavior. In conclusion, inheritance is a
powerful feature in Python that allows you to create complex, hierarchical
class structures with ease, while maintaining code reuse and modularity.

Review Questions
1. What is the purpose of Multiple Inheritance in Python?
2. Can a class inherit from multiple parent classes in Python?
3. What is the difference between Multiple Inheritance and Multilevel

Inheritance?
4. How does Method Overriding work in Python?
5. Can you provide an example of Method Overriding in Python?
6. What are the Special Functions in Python, and how do they work?
7. Can you provide an example of the init special function in Python?
8. What is the purpose of the str special function in Python?
9. Can you explain the use of the repr special function in Python?

10. What is the role of the super() function in relation to Method Overriding
in Python?

11. What is Multiple Inheritance in Python?
(a)
 When a class inherits properties and behaviors from a single parent

class
(b)
 When a class inherits properties and behaviors from multiple parent

classes
(c)
 When a class inherits properties and behaviors from a parent class,

which in turn inherits from another parent class
12. What is Method Overriding in Python?

(a)
 The process of providing a new implementation for a method defined
in a parent class

(b)
 The process of calling a method from a parent class
(c)

 The process of extending a method defined in a parent class

12

Python Operator
Overloading

Highlights
l Overloading ‘+’ Operator in Python

l Overloading ‘-’ Operator in Python

l Overloading Bitwise Operators

l Overloading Relational Operators

Operator Overloading in Python is a mechanism that allows us to change
the behavior of operators for instances of custom classes. This means
that we can use the familiar mathematical and comparison operators (+,
-, *, /, ==, !=, etc.) on instances of our own classes, and specify how
these operators should behave for those instances. This allows us to
write more natural and readable code, as well as make our classes more
convenient to use. Operator Overloading is achieved through the use of
special methods in Python, such as add, sub, mul, truediv, and others. By
defining these special methods, we can specify how our objects should
behave when they are subjected to these operators.

12.1 Overloading ‘+’ Operator in Python
To overload the “+” operator in Python, we can define the add method in
our custom class. The add method takes two arguments, self and other,
and is responsible for returning the result of adding the two objects
together.

222 Python Programming: A Step-by-Step Guide to Learning the Language

Here’s an example of how you might overload the “+” operator for a custom
class called “Point”:

Code 12.1 Overloading “+” operator

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def __add__(self, other):

return Point(self.x + other.x, self.y + other.y)

p1 = Point(1, 2)

p2 = Point(3, 4)

p3 = p1 + p2

print(p3.x, p3.y)

In this example, the add method is used to add two Point objects together.
The + operator is applied to two Point instances, p1 and p2, and the result is
a third Point instance, p3, that represents the sum of the two.

12.2 Overloading ‘-’ Operator in Python
To overload the “-” operator in Python, we can define the sub method in our
custom class. The sub method takes two arguments, self and other, and is
responsible for returning the result of subtracting the two objects.

Here’s an example of how you might overload the “-” operator for a custom
class called “Point”:

Code 12.2 Overloading “-” operator in Python

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

def __sub__(self, other):

return Point(self.x - other.x, self.y - other.y)

Python Operator Overloading 223

p1 = Point(1, 2)

p2 = Point(3, 4)

p3 = p1 - p2

print(p3.x, p3.y)

In this example, the sub method is used to subtract two Point objects. The -
operator is applied to two Point instances, p1 and p2, and the result is a third
Point instance, p3, that represents the difference of the two.

12.3 Overloading Bitwise Operators
In Python, you can overload the bitwise operators such as &, |, ^, ~, <<,
and >> by defining special methods in your class. The special methods for
bitwise operations are __and__, __or__, __xor__, __invert__, __lshift__, and

__rshift__, respectively.

Here’s an example of how you might overload the bitwise operators for a

custom class called “BitwiseOps”:

Code 12.3 Overloading Bitwise operator in Python

class BitwiseOps:

def __init__(self, value):

self.value = value

def __and__(self, other):

return self.value & other.value

def __or__(self, other):

return self.value | other.value

def __xor__(self, other):

return self.value ^ other.value

def __invert__(self):

return ~self.value

def __lshift__(self, shift):

return self.value << shift

def __rshift__(self, shift):

return self.value >> shift

224 Python Programming: A Step-by-Step Guide to Learning the Language

b1 = BitwiseOps(5)

b2 = BitwiseOps(3)

print(b1 & b2)

print(b1 | b2)

print(b1 ^ b2)

print(~b1)

print(b1 << 2)

print(b1 >> 1)

In this example, the BitwiseOps class overloads the bitwise operators.
Instances of the BitwiseOps class are created and the bitwise operations are
applied to those instances. The results of the operations are printed.

12.4 Overloading Relational Operators
In Python, you can overload relational operators such as ‘<’, ‘>’, ‘<=’,
‘>=’ and ‘==’ using special methods called “lt”, “gt”, “le”, “ge” and “eq”
respectively.

These methods allow you to define custom comparison behavior for your
classes, allowing you to compare objects based on specific attributes or
conditions.

To overload a relational operator, you simply need to define the corresponding
special method in your class and implement the desired comparison behavior.

Here’s an example program that demonstrates how to overload the ‘<’
operator in Python:

Code 12.4 Illustration of overloading ‘<’ operator in Python

class Rectangle:

def __init__(self, width, height):

self.width = width

self.height = height

def area(self):

return self.width * self.height

def __lt__(self, other):

return self.area() < other.area()

Python Operator Overloading 225

Create two rectangles

rect1 = Rectangle(4, 5)

rect2 = Rectangle(3, 6)

Compare the rectangles using the ‘<’ operator

if rect1 < rect2:

print(“Rectangle 1 has a smaller area than Rectangle 2”)

else:

print(“Rectangle 1 has a larger area than Rectangle 2”)

In this program, we define a class Rectangle with attributes width and height,
and methods area and __lt__. The area method calculates the area of the
rectangle by multiplying the width and height. The __lt__ method overloads
the ‘<’ operator and compares the areas of two rectangles.

We then create two instances of the Rectangle class and use the ‘<’ operator
to compare them. The output of the program will depend on the dimensions
of the rectangles we create. If rect1 has a smaller area than rect2, the program
will print “Rectangle 1 has a smaller area than Rectangle 2”, otherwise it will
print “Rectangle 1 has a larger area than Rectangle 2”.

12.5 Summary
In Python, we can customize the behavior of operators for our own classes by
overloading them with special methods. We can overload various operators
such as the addition and subtraction operators, bitwise operators, and relational
operators. To overload the addition operator ‘+’, we use the special method
“add”, and for the subtraction operator ‘-’, we use the “sub” method. For the
bitwise operators ‘&’, ‘|’, ‘^’, and ‘~’, we can overload them with the “and”,
“or”, “xor”, and “invert” methods respectively. We can also overload the
relational operators such as ‘<’, ‘>’, ‘<=’, ‘>=’, and ‘==’ by defining the “lt”,
“gt”, “le”, “ge”, and “eq” methods respectively. By overloading operators,
we can define custom behavior for our classes that can simplify the code and
make it more intuitive to use.

Review Questions
1. What is operator overloading in Python?
2. How can we overload the addition operator ‘+’ in Python?

226 Python Programming: A Step-by-Step Guide to Learning the Language

3. What is the special method used to overload the subtraction operator ‘-’
in Python?

4. How can we overload the bitwise operator ‘&’ in Python?
5. What is the special method used to overload the relational operator ‘<’

in Python?
6. Can we overload multiple operators in a single class in Python?
7. What is the benefit of overloading operators in Python?
8. How can we define custom behavior for our classes using operator

overloading in Python?
9. What is the difference between the ‘add’ and ‘radd’ methods in Python?

10. Can we overload operators for built-in classes in Python?
11. Which special method is used to overload the addition operator ‘+’ in

Python?
(a) add
(b) sub
(c) and
(d) or

12. Which operator can we overload using the “eq” method in Python?
(a) +
(b) –
(c) &
(d) ==

Appendix-1

List of Python Standard Modules

Module Name Description
array
 Efficient arrays of numeric values
atexit Register functions to be called when a program

closes
audioop Manipulate raw audio data
base64 Encode and decode binary data using Base64

representation
bdb Debugger framework
binascii Convert between binary and ASCII representations
bisect Binary search and insertion into sorted lists
builtins Built-in functions, exceptions, and attributes
cmath Complex math functions
collections Container datatypes
contextlib Utilities for with-statement contexts
copy Shallow and deep copy operations
csv CSV file reading and writing
datetime Basic date and time types
difflib Helpers for computing deltas
dis Disassembler for Python bytecode
email Package for handling email messages
encodings Encodings and Unicode handling
enum Enumeration types
fileinput Iterate over lines from multiple input sources
fnmatch Unix-style filename pattern matching
fractions Rational numbers
functools Higher-order functions and operations on callable

objects
gc Garbage collector for Python
getpass Portable password input

228 Python Programming: A Step-by-Step Guide to Learning the Language

Module Name Description
glob Unix-style pathname pattern expansion
gzip Support for gzip files
hashlib Secure hash and message digest algorithms
heapq Heap queue algorithm
html Package for working with HTML
http HTTP client and server
imaplib IMAP email protocol client
imghdr Determine the type of an image
importlib Package for programmatically importing modules
inspect Inspect live objects
io Core tools for working with streams
ipaddress IPv4/IPv6 manipulation library
itertools Functions creating iterators for efficient looping
json JSON encoder and decoder
logging Flexible event logging system
lzma Support for LZMA compression
math Mathematical functions
mimetypes Map filenames to MIME types
mmap Memory-mapped file support
multiprocessing Process-based parallelism
netrc Read and write netrc files
nntplib NNTP protocol client
numbers Numeric abstract base classes
os Miscellaneous operating system interfaces
pathlib Object-oriented filesystem paths
pdb Python debugger
pickle Python object serialization
pkgutil Package utilities
platform Access to underlying platform’s identifying data
plistlib Generate and parse Mac OS X property lists
poplib POP3 protocol client
pprint Pretty-print data structures
profile Performance analysis of Python programs
pstats Statistics for Python programs

Appendix 229

Module Name Description
pty Pseudo-terminal utilities
queue Thread-safe FIFO implementation
quopri Encode and decode MIME quoted-printable data
random Generate pseudo-random numbers
re Regular expression operations
reprlib Alternate repr() implementation
resource System resource usage information
RLcompleter Completion function for GNU readline
runpy Locate and run Python modules
sched Event scheduler
secrets Generate secure random numbers for managing

secrets
select Waiting for I/O completion
shelve Python object persistence
shlex Simple lexical analysis
shutil High-level file operations
signal Set handlers for asynchronous events
site Site-specific configuration hook
smtpd SMTP server classes
smtplib SMTP protocol client
sndhdr Determine the type of a sound file
socket Low-level networking interface
socketserver Framework for network servers
sqlite3 DB-API 2.0 interface for SQLite databases
ssl TLS/SSL wrapper for socket objects
stat Interpreting stat() results
statistics Mathematical statistics functions
string Common string operations
stringprep Internet string preparation
struct Interpret bytes as packed binary data
subprocess Subprocess management
sunau Read and write Sun AU files
symbol Constants used with Python parse trees
symtable Access to the compiler’s symbol tables
sys System-specific parameters and functions

230 Python Programming: A Step-by-Step Guide to Learning the Language

Module Name Description
sysconfig Python’s configuration information
tabnanny Indentation validator
tarfile Read and write tar archive files
telnetlib Telnet client
tempfile Generate temporary files and directories
textwrap Text wrapping and filling
this Prints the Zen of Python
threading Thread-based parallelism
time Time access and conversions
timeit Measure execution time of small code snippets
tkinter Python interface to Tcl/Tk
token Constants used with Python parse trees
tokenize Tokenize Python source code
trace Trace or track Python statement execution
traceback Print or retrieve a stack traceback
tracemalloc Debug memory allocations
tty Terminal control functions
turtle Turtle graphics
turtledemo A collection of Python turtle demos
types Dynamic type creation and names for built-in

types
typing Support for type hints
unicodedata Unicode database
unittest Unit testing framework
urllib URL handling modules
uu Encode and decode uuencoded files
uuid UUID objects according to RFC 4122
venv Creation of virtual environments
warnings Warning control
wave Read and write WAV files
weakref Weak references
webbrowser Convenient web-browser controller
winreg Windows registry access
winsound Sound-playing interface for Windows
wsgiref WSGI Utilities and Reference Implementation

Appendix 231

Module Name Description
xml XML processing modules
xmlrpc XMLRPC server and client modules
zipapp Manage executable Python zip archives
zipfile Manage executable Python zip archives
zipimport Import modules from ZIP archives
zlib Low-level interface to compression and

decompression routines in the zlib library

https://taylorandfrancis.com

Bibliography

1. Matthes, Eric. “Python Crash Course: A Hands-On, Project-Based
Introduction to Programming.” No Starch Press, 2019.

2. Ramalho,
Luciano. “Fluent Python: Clear, Concise, and Effective
Programming.” O’Reilly Media, 2015.

3. Sweigart,
Al. “Automate the Boring Stuff with Python: Practical
Programming for Total Beginners.” No Starch Press, 2015.

4. Lutz, Mark. “Learning Python: Powerful Object-Oriented Programming.”
O’Reilly Media, 2013.

5. VanderPlas, Jake. “Python Data Science Handbook: Essential Tools for
Working with Data.” O’Reilly Media, 2016.

	Cover
	Title Page
	Half Title
	Copyright Page
	Organization of the Book
	Table of Contents
	1. Introduction to Python Language
	1.1 Programming Language
	1.2 History of Python Language
	1.3 Origin of Python Programming Language
	1.4 Features of Python
	1.5 Limitations of Python
	1.6 Major Applications of Python
	1.7 Getting Python
	1.8 Installing Python
	1.8.1 Unix and Linux Installation
	1.8.2 Windows Installation
	1.8.3 Macintosh Installation

	1.9 Setting up Path
	1.9.1 Setting up Path at Unix/Linux
	1.9.2 Setting up the Path at windows

	1.10 Python Environment Variables
	1.11 Running Python
	1.11.1 Interactive Interpreter
	1.11.2 Script from the Command-Line
	1.11.3 Integrated Development Environment

	1.12 First Python Program
	1.12.1 Interactive Mode Programming
	1.12.2 The Script Mode Programming

	1.13 Python’s Interactive Help
	1.13.1 Python Help Through a Web Browser

	1.14 Python Differences From Other Languages
	1.14.1 Difference Between C and Python
	1.14.2 Difference Between C++ and Python
	1.14.3 Difference between Java and Python

	1.15 Summary
	Review Questions

	2. Python Data Types and Input Output
	2.1 Keywords
	2.2 Identifiers
	2.3 Python Statements
	2.4 Indentation
	2.5 Python Documentation
	2.5.1 Single Line Comment
	2.5.2 Multi Line Comments

	2.6 Docstrings
	2.7 Variables
	2.7.1 Variable Assignment
	2.7.2 Variable Types in Python

	2.8 Multiple Assignment
	2.9 Python Data Types
	2.9.1 Numeric Datatype
	2.9.1.1 Integers
	2.9.1.2 Floating-point Numbers
	2.9.1.3 Complex Numbers

	2.9.2 Strings
	2.9.2.1 Indexing of a String:
	2.9.2.2 Negative Indexing:
	2.9.2.3 Slicing

	2.9.3 Booleans
	2.9.4 Lists
	2.9.5 Tuples
	2.9.6 Sets
	2.7.8 Dictionaries

	2.10 Data Type Conversion
	2.10.1 Implicit Type Conversion in Python
	2.10.2 Explicit Type Conversion in Python

	2.11 Input and output
	2.12 Import
	2.13 Summary
	Review Questions

	3. Operators and Expressions
	3.1 Operator
	3.1.1 Arithmetic Operators
	3.1.2 Comparison Operators
	3.1.3 Assignment Operator
	3.1.4 Logical Operators
	3.1.5 Bitwise Operators
	3.1.6 Special Operators
	3.1.6.1 Identity Operators
	3.1.6.2 Membership Operators

	3.2 Expressions
	3.2.1 Python Operator Precedence
	3.2.2 Associativity
	3.2.3 Non-Associative Operators

	3.3 Summary
	Review Questions

	4. Control Structures
	4.1 Decision Making Statements
	4.1.1 Python if Statement
	4.1.2 Python if-else Statement
	4.1.3 Python if-elif-else
	4.1.4 Python Nested if Statements

	4.2 Python Loops
	4.2.1 Types of Loops
	4.2.2 Python While Loop
	4.2.3 The Infinite Loop
	4.2.4 Using else with While Loop
	4.2.5 Python for Loop
	4.2.6 The range() Function
	4.2.7 For Loop with else
	4.2.8 Nested Loops

	4.3 Python Control Statements
	4.3.1 Python Break Statement
	4.3.2 Python Continue Statement
	4.3.3 Python Pass Statement

	4.4 Summary
	Review Questions

	5. Python Native Data Types
	5.1 Numbers
	5.1.1 Number Type Conversion
	5.1.2 Python Mathematical Functions
	5.1.3 Python Trigonometric Functions
	5.1.4 Python Random Number Functions
	5.1.5 Python Mathematical Constants

	5.2 Python Lists
	5.2.1 Creating a List
	5.2.2 Traversing a List
	5.2.2.1 Indexing
	5.2.2.2 Traversing Nested Lists
	5.2.2.3 Negative Indexing
	5.2.2.4 Slicing

	5.2.3 Changing or Adding Elements to a List
	5.2.4 List Methods
	5.2.5 List Functions
	5.2.6 List Comprehension
	5.2.7 List Membership Test

	5.3 Python Tuples
	5.3.1 Creating a Tuple
	5.3.2 Unpacking Tuple
	5.3.3 Traversing Elements in a Tuple
	5.3.3.1 Indexing
	5.3.3.2 Negative Indexing
	5.3.3.3 Tuple Slicing
	5.3.3.4 Changing/Updating a Tuple
	5.3.3.5 Deleting a Tuple
	5.3.3.6 Python Tuple Methods
	5.3.3.7 Python Tuple Functions
	5.3.3.8 Advantages of Tuple

	5.4 Python Sets
	5.4.1 Creating a Set
	5.4.2 Changing/Adding Elements to a Set
	5.4.3 Removing Elements from a Set
	5.4.4 Python Set Operations
	5.4.4.1 Set Union
	5.4.4.2 Set Intersection
	5.4.4.3 Set Difference
	5.4.4.4 Set Symmetric Difference

	5.4.5 Python Set Methods
	5.4.6 The in Operator
	5.4.7 Python Set Functions
	5.4.8 Frozen Sets

	5.5 Python Dictionary
	5.5.1 Creating a Dictionary
	5.5.2 Accessing a Dictionary
	5.5.3 Updating a Dictionary
	5.5.4 Removing or Deleting Elements of a Dictionary
	5.5.5 Python Dictionary Methods
	5.5.6 Python Dictionary Membership Test
	5.5.7 Python Dictionary Functions

	5.6 Python Strings
	5.6.1 Creating a String in Python
	5.6.2 Accessing String Characters
	5.6.3 Changing or Deleting String Characters
	5.6.4 Python String Operations
	5.6.4.1 Concatenation
	5.6.4.2 Iteration and Membership Test

	5.6.5 String Formatting
	5.6.6 Python String Built-in Methods

	5.7 Summary
	Review Questions

	6. Python Functions
	6.1 Python Functions
	6.2 Advantages of Python
	6.3 Types of Functions
	6.4 Built-in Functions
	6.5 Python User Defined Functions
	6.5.1 Function Definition
	6.5.2 Function Call
	6.5.3 Types of Function Arguments(Parameters)
	6.5.3.1 Function with No Arguments
	6.5.3.2 Function with Required Arguments
	6.5.3.3 Function with Arbitrary Length Arguments
	6.5.3.4 Function with Keyword Based Arguments
	6.5.3.5 Function with Default Arguments

	6.6 Python Anonymous Functions
	6.6.1 Characteristics of Lambda Form

	6.7 Pass by Value vs. Pass by Reference
	6.7.1 Pass by Value
	6.7.2 Pass by Object Reference

	6.8 Recursion
	6.8.1 Advantages of Recursion
	6.8.2 Disadvantages of Recursion

	6.9 Scope and Lifetime of Variables
	6.10 Summary
	Review Questions

	7. Python Modules
	7.1 Need of Module
	7.2 Module Definition
	7.3 Creating a Module
	7.4 Importing Module in the Interpreter
	7.5 Importing Module in the Another Script
	7.6 Importing Modules
	7.7 Search Path of Module
	7.8 Module Reloading
	7.9 The dir() Function
	7.10 Standard Modules
	7.11 Python Packages
	7.12 Summary
	Review Questions

	8. Exception Handling
	8.1 Exception
	8.2 Python Built-in Exceptions
	8.3 Exception Handling
	8.3.1 Try, Except, Else and Finally
	8.3.2 Catching Specific Exceptions in Python
	8.3.3 try….finally

	8.4 Python User Defined Exceptions
	8.5 Summary
	Review Questions

	9. File Management in Python
	9.1 Operations on Files
	9.1.1 Opening a File
	9.1.2 File Modes
	9.1.3 File object Attributes
	9.1.4 File Encoding
	9.1.5 Closing a File

	9.2 write() and read() Methods
	9.2.1 Writing to a File
	9.2.2 Reading from a File

	9.3 Python File Methods
	9.4 tell() and seek() Methods
	9.5 Renaming and Deleting Files
	9.5.1 Rename() Method
	9.5.2 Remove() Method

	9.6 Directories in Python
	9.6.1 mkdir() Method
	9.6.2 chdir() Method
	9.6.3 getcwd() Method
	9.6.4 rmdir() Method
	9.6.5 listdir() Method

	9.7 Python Directory Methods
	9.8 Summary
	Review Questions

	10. Classes and Objects
	10.1 Designing Classes
	10.2 Creating Objects
	10.2.1 Class Variable
	10.2.2 Instance Variable

	10.3 Types of Methods
	10.4 Access Specifiers in Python
	10.5 Accessing Attributes
	10.6 The Class Program
	10.6.1 Using a Class with Input
	10.6.2 A Class Program with Computations

	10.7 Editing Class Attributes
	10.8 Built-in Class Attributes
	10.9 Garbage Collection/Destroying Objects
	10.10 Summary
	Review Questions

	11. Inheritance
	11.1 Python Single Inheritance
	11.2 Python Multiple Inheritance
	11.3 Python Multilevel Inheritance
	11.4 Method Overriding in Python
	11.5 Special Functions in Python
	11.6 Summary
	Review Questions

	12. Python Operator Overloading
	12.1 Overloading ‘+’ Operator in Python
	12.2 Overloading ‘-’ Operator in Python
	12.3 Overloading Bitwise Operators
	12.4 Overloading Relational Operators
	12.5 Summary
	Review Questions

	Appendix
	Bibliography

